声弹性和粘弹性对不可压缩板中导波特性的影响

IF 1.9 3区 工程技术 Q3 MECHANICS
B. Zhang, P. Liu, Y. W. Liu, J. G. Yu, C. X. Luo, K. Li, L. Elmaimouni
{"title":"声弹性和粘弹性对不可压缩板中导波特性的影响","authors":"B. Zhang,&nbsp;P. Liu,&nbsp;Y. W. Liu,&nbsp;J. G. Yu,&nbsp;C. X. Luo,&nbsp;K. Li,&nbsp;L. Elmaimouni","doi":"10.1007/s11012-024-01805-2","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to the high fluid content, most incompressible soft structures typically exhibit viscosity, which has a significant influence on wave characteristics, especially attenuation. Meanwhile, they are inevitably prestressed owing to the volume-preserving deformations. Therefore, it is essential to investigate acoustoelastic and viscoelastic effects to better understand guided wave characteristics in a pre-stressed soft plate. To this end, a hyperviscoelastic model concerning viscoelasticity, acoustoelasticity, and nonlinearity is established to deduce the governed equations. An analytical integration orthogonal polynomial method is employed to solve complex solutions of wave equations. The dispersion, attenuation, and wave shapes are illustrated. The acoustoelastic and viscoelastic effects are analyzed. Some new wave phenomena are revealed: The pre-stretching inhibits wave attenuation, and the pre-compression promotes attenuation; As the pre-stress increases, high-frequency phase velocity and incremental displacement amplitudes increase. The results lay a theoretical foundation for guided wave elastography, quantitative characterization, and disease diagnosis of biological soft tissue.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 6","pages":"875 - 887"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustoelastic and viscoelastic effects on guided wave characteristics in an incompressible plate\",\"authors\":\"B. Zhang,&nbsp;P. Liu,&nbsp;Y. W. Liu,&nbsp;J. G. Yu,&nbsp;C. X. Luo,&nbsp;K. Li,&nbsp;L. Elmaimouni\",\"doi\":\"10.1007/s11012-024-01805-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owing to the high fluid content, most incompressible soft structures typically exhibit viscosity, which has a significant influence on wave characteristics, especially attenuation. Meanwhile, they are inevitably prestressed owing to the volume-preserving deformations. Therefore, it is essential to investigate acoustoelastic and viscoelastic effects to better understand guided wave characteristics in a pre-stressed soft plate. To this end, a hyperviscoelastic model concerning viscoelasticity, acoustoelasticity, and nonlinearity is established to deduce the governed equations. An analytical integration orthogonal polynomial method is employed to solve complex solutions of wave equations. The dispersion, attenuation, and wave shapes are illustrated. The acoustoelastic and viscoelastic effects are analyzed. Some new wave phenomena are revealed: The pre-stretching inhibits wave attenuation, and the pre-compression promotes attenuation; As the pre-stress increases, high-frequency phase velocity and incremental displacement amplitudes increase. The results lay a theoretical foundation for guided wave elastography, quantitative characterization, and disease diagnosis of biological soft tissue.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 6\",\"pages\":\"875 - 887\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01805-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01805-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

由于流体含量高,大多数不可压缩的软结构通常会表现出粘度,这对波浪特性,尤其是衰减有重大影响。同时,由于体积保持变形,它们不可避免地会受到预应力。因此,有必要研究声弹性和粘弹性效应,以便更好地了解预应力软板中的导波特性。为此,我们建立了一个涉及粘弹性、声弹性和非线性的超粘弹性模型,以推导出治理方程。采用分析积分正交多项式法求解波方程的复杂解。图解了频散、衰减和波形。分析了声弹性和粘弹性效应。揭示了一些新的波现象:预拉伸抑制波的衰减,预压缩促进波的衰减;随着预应力的增加,高频相位速度和增量位移振幅增大。这些结果为生物软组织的导波弹性成像、定量表征和疾病诊断奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Acoustoelastic and viscoelastic effects on guided wave characteristics in an incompressible plate

Acoustoelastic and viscoelastic effects on guided wave characteristics in an incompressible plate

Acoustoelastic and viscoelastic effects on guided wave characteristics in an incompressible plate

Owing to the high fluid content, most incompressible soft structures typically exhibit viscosity, which has a significant influence on wave characteristics, especially attenuation. Meanwhile, they are inevitably prestressed owing to the volume-preserving deformations. Therefore, it is essential to investigate acoustoelastic and viscoelastic effects to better understand guided wave characteristics in a pre-stressed soft plate. To this end, a hyperviscoelastic model concerning viscoelasticity, acoustoelasticity, and nonlinearity is established to deduce the governed equations. An analytical integration orthogonal polynomial method is employed to solve complex solutions of wave equations. The dispersion, attenuation, and wave shapes are illustrated. The acoustoelastic and viscoelastic effects are analyzed. Some new wave phenomena are revealed: The pre-stretching inhibits wave attenuation, and the pre-compression promotes attenuation; As the pre-stress increases, high-frequency phase velocity and incremental displacement amplitudes increase. The results lay a theoretical foundation for guided wave elastography, quantitative characterization, and disease diagnosis of biological soft tissue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信