二维多项反应-次扩散方程的 L1-ADI 方案收敛性分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yubing Jiang, Hu Chen
{"title":"二维多项反应-次扩散方程的 L1-ADI 方案收敛性分析","authors":"Yubing Jiang, Hu Chen","doi":"10.1002/num.23115","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the numerical approximation for a two‐dimensional multiterm reaction‐subdiffusion equation, where we adopt an alternating direction implicit (ADI) method combined with the L1 approximation for the multiterm time Caputo fractional derivatives of orders between 0 and 1. Stability and convergence of the full‐discrete L1‐ADI scheme are established. The final convergence in time direction is point‐wise, that is, at . Numerical results are given to confirm our theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of a L1‐ADI scheme for two‐dimensional multiterm reaction‐subdiffusion equation\",\"authors\":\"Yubing Jiang, Hu Chen\",\"doi\":\"10.1002/num.23115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the numerical approximation for a two‐dimensional multiterm reaction‐subdiffusion equation, where we adopt an alternating direction implicit (ADI) method combined with the L1 approximation for the multiterm time Caputo fractional derivatives of orders between 0 and 1. Stability and convergence of the full‐discrete L1‐ADI scheme are established. The final convergence in time direction is point‐wise, that is, at . Numerical results are given to confirm our theoretical results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了二维多期反应-次扩散方程的数值近似,采用交替方向隐式(ADI)方法结合 L1 近似来求取阶数介于 0 和 1 之间的多期时间卡普托分数导数。 建立了全离散 L1-ADI 方案的稳定性和收敛性。在时间方向上的最终收敛是点式的,即在 。给出的数值结果证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of a L1‐ADI scheme for two‐dimensional multiterm reaction‐subdiffusion equation
In this paper, we consider the numerical approximation for a two‐dimensional multiterm reaction‐subdiffusion equation, where we adopt an alternating direction implicit (ADI) method combined with the L1 approximation for the multiterm time Caputo fractional derivatives of orders between 0 and 1. Stability and convergence of the full‐discrete L1‐ADI scheme are established. The final convergence in time direction is point‐wise, that is, at . Numerical results are given to confirm our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信