针对智能制造的分布式加密数据联合学习

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Timothy Kuo, Hui Yang
{"title":"针对智能制造的分布式加密数据联合学习","authors":"Timothy Kuo, Hui Yang","doi":"10.1115/1.4065571","DOIUrl":null,"url":null,"abstract":"\n Industry 4.0 drives exponential growth in the amount of operational data collected in factories. These data are commonly distributed and stored in different business units or cooperative companies. Such data-rich environments increase the likelihood of cyber attacks, privacy breaches, and security violations. Also, this poses significant challenges on developing machine learning models on sensitive data that are distributed among different business units. To fill this gap, this paper presents a novel privacy-preserving framework to enable federated learning on siloed and encrypted data for smart manufacturing. Specifically, we leverage fully homomorphic encryption (FHE) to allow for computation on ciphertexts and generate encrypted results which, when decrypted, match the results of mathematical operations performed on the plaintexts. Multi-layer encryption and privacy protection reduce the likelihood of data breaches while maintaining the prediction performance of machine learning models. Experimental results in real-world case studies show that the proposed framework yields superior performance to reduce the risk of cyber attacks and harness siloed data for smart manufacturing.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Learning on Distributed and Encrypted Data for Smart Manufacturing\",\"authors\":\"Timothy Kuo, Hui Yang\",\"doi\":\"10.1115/1.4065571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Industry 4.0 drives exponential growth in the amount of operational data collected in factories. These data are commonly distributed and stored in different business units or cooperative companies. Such data-rich environments increase the likelihood of cyber attacks, privacy breaches, and security violations. Also, this poses significant challenges on developing machine learning models on sensitive data that are distributed among different business units. To fill this gap, this paper presents a novel privacy-preserving framework to enable federated learning on siloed and encrypted data for smart manufacturing. Specifically, we leverage fully homomorphic encryption (FHE) to allow for computation on ciphertexts and generate encrypted results which, when decrypted, match the results of mathematical operations performed on the plaintexts. Multi-layer encryption and privacy protection reduce the likelihood of data breaches while maintaining the prediction performance of machine learning models. Experimental results in real-world case studies show that the proposed framework yields superior performance to reduce the risk of cyber attacks and harness siloed data for smart manufacturing.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065571\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065571","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

工业 4.0 推动工厂收集的运营数据量呈指数级增长。这些数据通常分布并存储在不同的业务部门或合作公司。这种数据丰富的环境增加了网络攻击、隐私泄露和安全违规的可能性。同时,这也给针对分布在不同业务部门的敏感数据开发机器学习模型带来了巨大挑战。为了填补这一空白,本文提出了一个新颖的隐私保护框架,以实现智能制造中孤岛式加密数据的联合学习。具体来说,我们利用全同态加密(FHE)技术对密文进行计算,并生成加密结果,这些结果在解密时与对明文执行的数学运算结果相匹配。多层加密和隐私保护降低了数据泄露的可能性,同时保持了机器学习模型的预测性能。实际案例研究的实验结果表明,所提出的框架具有卓越的性能,可以降低网络攻击风险,并利用孤岛数据实现智能制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated Learning on Distributed and Encrypted Data for Smart Manufacturing
Industry 4.0 drives exponential growth in the amount of operational data collected in factories. These data are commonly distributed and stored in different business units or cooperative companies. Such data-rich environments increase the likelihood of cyber attacks, privacy breaches, and security violations. Also, this poses significant challenges on developing machine learning models on sensitive data that are distributed among different business units. To fill this gap, this paper presents a novel privacy-preserving framework to enable federated learning on siloed and encrypted data for smart manufacturing. Specifically, we leverage fully homomorphic encryption (FHE) to allow for computation on ciphertexts and generate encrypted results which, when decrypted, match the results of mathematical operations performed on the plaintexts. Multi-layer encryption and privacy protection reduce the likelihood of data breaches while maintaining the prediction performance of machine learning models. Experimental results in real-world case studies show that the proposed framework yields superior performance to reduce the risk of cyber attacks and harness siloed data for smart manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信