基于脉冲神经网络的数据预处理方法,以巴什基尔共和国乌法市为例提高水位预报的准确性

E. V. Palchevsky, V. V. Antonov, E. A. Makarova, N. A. Kononov, Ya. S. Voyakovskaya
{"title":"基于脉冲神经网络的数据预处理方法,以巴什基尔共和国乌法市为例提高水位预报的准确性","authors":"E. V. Palchevsky, V. V. Antonov, E. A. Makarova, N. A. Kononov, Ya. S. Voyakovskaya","doi":"10.17587/prin.15.265-272","DOIUrl":null,"url":null,"abstract":"The developed method of data preprocessing based on impulse neural network is considered. The essence of this method is to improve the quality of the initial dataset by minimising data noise. The peculiarity is to improve the accuracy of the predicted values of the time series of water levels obtained at the output of the pulse neural network. Retrospective data were obtained from hydrological posts (river gauge) and automatic stations with the help of FSUE «Centre of Register and Cadastre» from 01.01.1997 to 30.06.2023. On the example of hydrological post 76289 (Ufa) the experiment on forecasting of water levels with the help of the developed system «Flood 2.0» was carried out. The experiment proves the efficiency of the data preprocessing method developed in this study to improve the accuracy of water level forecasts.","PeriodicalId":513113,"journal":{"name":"Programmnaya Ingeneria","volume":"6 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of Data Preprocessing on the Basis of Pulse Neural Network to Improve the Accuracy of Water Level Forecast on the Example of Ufa City of the Republic of Bashkortostan\",\"authors\":\"E. V. Palchevsky, V. V. Antonov, E. A. Makarova, N. A. Kononov, Ya. S. Voyakovskaya\",\"doi\":\"10.17587/prin.15.265-272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The developed method of data preprocessing based on impulse neural network is considered. The essence of this method is to improve the quality of the initial dataset by minimising data noise. The peculiarity is to improve the accuracy of the predicted values of the time series of water levels obtained at the output of the pulse neural network. Retrospective data were obtained from hydrological posts (river gauge) and automatic stations with the help of FSUE «Centre of Register and Cadastre» from 01.01.1997 to 30.06.2023. On the example of hydrological post 76289 (Ufa) the experiment on forecasting of water levels with the help of the developed system «Flood 2.0» was carried out. The experiment proves the efficiency of the data preprocessing method developed in this study to improve the accuracy of water level forecasts.\",\"PeriodicalId\":513113,\"journal\":{\"name\":\"Programmnaya Ingeneria\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programmnaya Ingeneria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17587/prin.15.265-272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programmnaya Ingeneria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/prin.15.265-272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了所开发的基于脉冲神经网络的数据预处理方法。该方法的本质是通过最大限度地减少数据噪声来提高初始数据集的质量。其特殊之处在于提高脉冲神经网络输出所获得的水位时间序列预测值的准确性。在联邦统计局 "登记和地籍中心 "的帮助下,从 1997 年 1 月 1 日至 2023 年 6 月 30 日期间的水文站(河道测量仪)和自动站获得了回溯数据。以第 76289 号水文站(乌法)为例,利用开发的 "洪水 2.0 "系统进行了水位预报试验。实验证明了本研究开发的数据预处理方法在提高水位预报精度方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method of Data Preprocessing on the Basis of Pulse Neural Network to Improve the Accuracy of Water Level Forecast on the Example of Ufa City of the Republic of Bashkortostan
The developed method of data preprocessing based on impulse neural network is considered. The essence of this method is to improve the quality of the initial dataset by minimising data noise. The peculiarity is to improve the accuracy of the predicted values of the time series of water levels obtained at the output of the pulse neural network. Retrospective data were obtained from hydrological posts (river gauge) and automatic stations with the help of FSUE «Centre of Register and Cadastre» from 01.01.1997 to 30.06.2023. On the example of hydrological post 76289 (Ufa) the experiment on forecasting of water levels with the help of the developed system «Flood 2.0» was carried out. The experiment proves the efficiency of the data preprocessing method developed in this study to improve the accuracy of water level forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信