{"title":"掺有粒化高炉矿渣/粉煤灰的碱活性磷渣砂浆性能研究","authors":"Yannian Zhang, Qi Wu, Daokui Yang, Qingjie Wang, Zhifu Qu, Yugang Zhong","doi":"10.1007/s41779-024-01038-2","DOIUrl":null,"url":null,"abstract":"<div><p>Alkali-activated materials (AAMs), which are prepared by using various solid wastes as precursors and reacting with alkaline solutions, are gradually applied in the construction industry. However, not all solid waste precursors can exhibit good performance in the preparation of AAMs. To realize the effective utilization of phosphorus slag (PS) solid waste, alkali-activated PS-GBFS-FA (AAPGF) was prepared by using PS and GBFS/FA. Using different contents of GBFS/FA to replace PS, the workability performance, mechanical properties and hydration products of AAPGF were investigated. The incorporation of GBFS/FA improves the fluidity of AAPGF, but leads to slurry flash setting. When containing 30% GBFS/FA, the 28 days compressive strength of AAPGF can reach the highest 72.65 MPa. GBFS/FA increased the number of C-(A)-S-H gels, accompanied by the formation of hydrotalcite gels. In addition, GBFS/FA also transforms AAPGF hydration products from C-S-H gel to C-(N)-A-S-H and N-A-S-H gel with high degree of polymerization, and SiO<sub>4</sub> tetrahedron is Q<sup>2</sup> unit. GBFS/FA will significantly reduce unhydrated particles, but it will lead to uneven distribution of hydration products and produce large pores. The results of this study can provide reference value for the effective use of PS.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 4","pages":"1281 - 1291"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the properties of alkali-activated phosphorus slag mortar mixed with granulated blast furnace slag/fly ash\",\"authors\":\"Yannian Zhang, Qi Wu, Daokui Yang, Qingjie Wang, Zhifu Qu, Yugang Zhong\",\"doi\":\"10.1007/s41779-024-01038-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alkali-activated materials (AAMs), which are prepared by using various solid wastes as precursors and reacting with alkaline solutions, are gradually applied in the construction industry. However, not all solid waste precursors can exhibit good performance in the preparation of AAMs. To realize the effective utilization of phosphorus slag (PS) solid waste, alkali-activated PS-GBFS-FA (AAPGF) was prepared by using PS and GBFS/FA. Using different contents of GBFS/FA to replace PS, the workability performance, mechanical properties and hydration products of AAPGF were investigated. The incorporation of GBFS/FA improves the fluidity of AAPGF, but leads to slurry flash setting. When containing 30% GBFS/FA, the 28 days compressive strength of AAPGF can reach the highest 72.65 MPa. GBFS/FA increased the number of C-(A)-S-H gels, accompanied by the formation of hydrotalcite gels. In addition, GBFS/FA also transforms AAPGF hydration products from C-S-H gel to C-(N)-A-S-H and N-A-S-H gel with high degree of polymerization, and SiO<sub>4</sub> tetrahedron is Q<sup>2</sup> unit. GBFS/FA will significantly reduce unhydrated particles, but it will lead to uneven distribution of hydration products and produce large pores. The results of this study can provide reference value for the effective use of PS.</p></div>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"60 4\",\"pages\":\"1281 - 1291\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41779-024-01038-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-01038-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Study on the properties of alkali-activated phosphorus slag mortar mixed with granulated blast furnace slag/fly ash
Alkali-activated materials (AAMs), which are prepared by using various solid wastes as precursors and reacting with alkaline solutions, are gradually applied in the construction industry. However, not all solid waste precursors can exhibit good performance in the preparation of AAMs. To realize the effective utilization of phosphorus slag (PS) solid waste, alkali-activated PS-GBFS-FA (AAPGF) was prepared by using PS and GBFS/FA. Using different contents of GBFS/FA to replace PS, the workability performance, mechanical properties and hydration products of AAPGF were investigated. The incorporation of GBFS/FA improves the fluidity of AAPGF, but leads to slurry flash setting. When containing 30% GBFS/FA, the 28 days compressive strength of AAPGF can reach the highest 72.65 MPa. GBFS/FA increased the number of C-(A)-S-H gels, accompanied by the formation of hydrotalcite gels. In addition, GBFS/FA also transforms AAPGF hydration products from C-S-H gel to C-(N)-A-S-H and N-A-S-H gel with high degree of polymerization, and SiO4 tetrahedron is Q2 unit. GBFS/FA will significantly reduce unhydrated particles, but it will lead to uneven distribution of hydration products and produce large pores. The results of this study can provide reference value for the effective use of PS.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted