在非达西多孔体系中,流经具有对流热传输和速度滑移的细长表面的磁流体生物对流

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-05-21 DOI:10.1002/htj.23084
Utpal Jyoti Das, Indushri Patgiri
{"title":"在非达西多孔体系中,流经具有对流热传输和速度滑移的细长表面的磁流体生物对流","authors":"Utpal Jyoti Das,&nbsp;Indushri Patgiri","doi":"10.1002/htj.23084","DOIUrl":null,"url":null,"abstract":"<p>In recent times, bioconvection has numerous uses, like, biological and biotechnological problems. The present study describes the magnetic bioconvective Buongiorno's flow model with microorganisms in a stretchable area with convective heat transfer and second-order velocity slip in a non-Darcian porous regime. Here, the influence of variable viscosity, viscous dissipation, Joule heating, and heat source/sink are considered in the occurrence of higher-order chemical reactions. Employing proper similarity transformations leading equations are transformed to dimension-free form. The transformed equations are solved via MATLAB bvp4c problem solver. This study's main objective is to graphically analyze the effects of different pertinent factors on the density of motile microorganisms, velocity, concentration, temperature, number of motile microorganisms' density, skin friction, mass transport rate, and heat transport rate. The main findings drawn from this study are viscosity <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>−</mo>\n \n <mn>5</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>θ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(-5\\le {\\theta }_{r}\\le -1)$</annotation>\n </semantics></math> and magnetic parameter <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.5</mn>\n \n <mo>≤</mo>\n \n <mi>M</mi>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(0.5\\le M\\le 3)$</annotation>\n </semantics></math> lowers the fluid velocity. Biot number <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.4</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>B</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>0.6</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(0.4\\le {B}_{i}\\le 0.6)$</annotation>\n </semantics></math> increases fluid temperature, but reduces heat transport rates and skin friction. Schmidt <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.5</mn>\n \n <mo>≤</mo>\n \n <mi>S</mi>\n \n <mi>c</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(0.5\\le Sc\\le 1)$</annotation>\n </semantics></math> and Eckert numbers <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.1</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>E</mi>\n \n <mi>c</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(0.1\\le {E}_{c}\\le 3)$</annotation>\n </semantics></math> reduce the fluid concentration. A rise of 0.3 in bioconvective Rayleigh number <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.3</mn>\n \n <mo>≤</mo>\n \n <mi>R</mi>\n \n <msub>\n <mi>a</mi>\n \n <mi>b</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>0.9</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(0.3\\le R{a}_{b}\\le 0.9)$</annotation>\n </semantics></math> and 0.2 in buoyancy ratio number <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.1</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>N</mi>\n \n <mi>r</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>0.5</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(0.1\\le {N}_{r}\\le 0.5)$</annotation>\n </semantics></math> causes a percentage drop in velocities of 8.79% and 3.91% (approximately), respectively, in the neighborhood of the sheet. Furthermore, the increase in Peclet number <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.8</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>P</mi>\n \n <mi>e</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>1.5</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(0.8\\le {P}_{e}\\le 1.5)$</annotation>\n </semantics></math> by 0.2 lowers the density number of microorganisms by 28%. Additionally, the profile of motile microorganisms is improved by thermophoresis impact, while it is diminished by chemical reaction.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamic bioconvective flow past an elongated surface with convective heat transport, and velocity slip in a non-Darcian porous regime\",\"authors\":\"Utpal Jyoti Das,&nbsp;Indushri Patgiri\",\"doi\":\"10.1002/htj.23084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent times, bioconvection has numerous uses, like, biological and biotechnological problems. The present study describes the magnetic bioconvective Buongiorno's flow model with microorganisms in a stretchable area with convective heat transfer and second-order velocity slip in a non-Darcian porous regime. Here, the influence of variable viscosity, viscous dissipation, Joule heating, and heat source/sink are considered in the occurrence of higher-order chemical reactions. Employing proper similarity transformations leading equations are transformed to dimension-free form. The transformed equations are solved via MATLAB bvp4c problem solver. This study's main objective is to graphically analyze the effects of different pertinent factors on the density of motile microorganisms, velocity, concentration, temperature, number of motile microorganisms' density, skin friction, mass transport rate, and heat transport rate. The main findings drawn from this study are viscosity <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mo>−</mo>\\n \\n <mn>5</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>θ</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(-5\\\\le {\\\\theta }_{r}\\\\le -1)$</annotation>\\n </semantics></math> and magnetic parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>0.5</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>M</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(0.5\\\\le M\\\\le 3)$</annotation>\\n </semantics></math> lowers the fluid velocity. Biot number <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>0.4</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>B</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>0.6</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(0.4\\\\le {B}_{i}\\\\le 0.6)$</annotation>\\n </semantics></math> increases fluid temperature, but reduces heat transport rates and skin friction. Schmidt <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>0.5</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>S</mi>\\n \\n <mi>c</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(0.5\\\\le Sc\\\\le 1)$</annotation>\\n </semantics></math> and Eckert numbers <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>0.1</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>E</mi>\\n \\n <mi>c</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(0.1\\\\le {E}_{c}\\\\le 3)$</annotation>\\n </semantics></math> reduce the fluid concentration. A rise of 0.3 in bioconvective Rayleigh number <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>0.3</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>R</mi>\\n \\n <msub>\\n <mi>a</mi>\\n \\n <mi>b</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>0.9</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(0.3\\\\le R{a}_{b}\\\\le 0.9)$</annotation>\\n </semantics></math> and 0.2 in buoyancy ratio number <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>0.1</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>N</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>0.5</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(0.1\\\\le {N}_{r}\\\\le 0.5)$</annotation>\\n </semantics></math> causes a percentage drop in velocities of 8.79% and 3.91% (approximately), respectively, in the neighborhood of the sheet. Furthermore, the increase in Peclet number <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>0.8</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mi>e</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>1.5</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(0.8\\\\le {P}_{e}\\\\le 1.5)$</annotation>\\n </semantics></math> by 0.2 lowers the density number of microorganisms by 28%. Additionally, the profile of motile microorganisms is improved by thermophoresis impact, while it is diminished by chemical reaction.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

近来,生物对流在生物和生物技术等问题上有许多用途。本研究描述了磁性生物对流 Buongiorno 流动模型,该模型在非达克斯多孔体系中,在可伸展区域中存在微生物,并伴有对流换热和二阶速度滑移。这里考虑了在发生高阶化学反应时可变粘度、粘性耗散、焦耳加热和热源/散热的影响。采用适当的相似性转换,将主要方程转换为无量纲形式。转换后的方程通过 MATLAB bvp4c 问题求解器求解。本研究的主要目的是以图表形式分析不同相关因素对运动微生物密度、速度、浓度、温度、运动微生物数量密度、表皮摩擦、质量传输速率和热传输速率的影响。这项研究得出的主要结论是,粘度和磁性参数会降低流体速度。比奥特数会提高流体温度,但会降低热传输率和表皮摩擦力。施密特数和埃克特数会降低流体浓度。生物对流瑞利数和浮力比数分别增加 0.3 和 0.2 会导致片层附近的速度分别下降 8.79% 和 3.91%(约)。此外,佩克莱特数增加 0.2 会使微生物密度降低 28%。此外,热泳影响改善了运动微生物的轮廓,而化学反应则降低了其轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetohydrodynamic bioconvective flow past an elongated surface with convective heat transport, and velocity slip in a non-Darcian porous regime

In recent times, bioconvection has numerous uses, like, biological and biotechnological problems. The present study describes the magnetic bioconvective Buongiorno's flow model with microorganisms in a stretchable area with convective heat transfer and second-order velocity slip in a non-Darcian porous regime. Here, the influence of variable viscosity, viscous dissipation, Joule heating, and heat source/sink are considered in the occurrence of higher-order chemical reactions. Employing proper similarity transformations leading equations are transformed to dimension-free form. The transformed equations are solved via MATLAB bvp4c problem solver. This study's main objective is to graphically analyze the effects of different pertinent factors on the density of motile microorganisms, velocity, concentration, temperature, number of motile microorganisms' density, skin friction, mass transport rate, and heat transport rate. The main findings drawn from this study are viscosity ( 5 θ r 1 ) $(-5\le {\theta }_{r}\le -1)$ and magnetic parameter ( 0.5 M 3 ) $(0.5\le M\le 3)$ lowers the fluid velocity. Biot number ( 0.4 B i 0.6 ) $(0.4\le {B}_{i}\le 0.6)$ increases fluid temperature, but reduces heat transport rates and skin friction. Schmidt ( 0.5 S c 1 ) $(0.5\le Sc\le 1)$ and Eckert numbers ( 0.1 E c 3 ) $(0.1\le {E}_{c}\le 3)$ reduce the fluid concentration. A rise of 0.3 in bioconvective Rayleigh number ( 0.3 R a b 0.9 ) $(0.3\le R{a}_{b}\le 0.9)$ and 0.2 in buoyancy ratio number ( 0.1 N r 0.5 ) $(0.1\le {N}_{r}\le 0.5)$ causes a percentage drop in velocities of 8.79% and 3.91% (approximately), respectively, in the neighborhood of the sheet. Furthermore, the increase in Peclet number ( 0.8 P e 1.5 ) $(0.8\le {P}_{e}\le 1.5)$ by 0.2 lowers the density number of microorganisms by 28%. Additionally, the profile of motile microorganisms is improved by thermophoresis impact, while it is diminished by chemical reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信