Mohammed-Amine Mossadak, Ahmed Chebak, Nada Ouahabi, Abdelhamid Rabhi, Abdelhafid Ait Elmahjoub
{"title":"用于电池-超级电容器电动汽车的新型混合 PI 后步进级联控制器(考虑到各种驾驶周期情况","authors":"Mohammed-Amine Mossadak, Ahmed Chebak, Nada Ouahabi, Abdelhamid Rabhi, Abdelhafid Ait Elmahjoub","doi":"10.1049/pel2.12697","DOIUrl":null,"url":null,"abstract":"<p>The integration of supercapacitors as hybrid energy storage systems in electric vehicles has attracted the attention of many researchers and has been considered as a promising solution. Bidirectional DC/DC converters (BDDCs) play a fundamental role in HESS, as they manage the power flow by controlling currents and regulating the DC bus voltage. However, they encounter the challenge of uncertainties and high fluctuation power loads, necessitating the fast dynamics, stability, and high robustness of the controller. This paper proposes a novel hybrid proportional–integral and backstepping cascade controller to regulate the DC-bus voltage under uncertainties and load variations, and to control the current references of the on-boarded sources. To confirm the asymptotic stability of the whole system, a nonlinear stability analysis is conducted using the Lyapunov theorem. A power management strategy is applied to distribute the power loads and generate reference currents for the BDDCs controller. Simulations results under various driving cycles using MATLAB/Simulink demonstrate the superiority of the proposed controller compared to conventional proportional–integral and backstepping controllers. A real-time controller-hardware-in-the-loop test bench is developed to validate the effectiveness of the proposed strategy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12697","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid PI–backstepping cascade controller for battery–supercapacitor electric vehicles considering various driving cycles scenarios\",\"authors\":\"Mohammed-Amine Mossadak, Ahmed Chebak, Nada Ouahabi, Abdelhamid Rabhi, Abdelhafid Ait Elmahjoub\",\"doi\":\"10.1049/pel2.12697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of supercapacitors as hybrid energy storage systems in electric vehicles has attracted the attention of many researchers and has been considered as a promising solution. Bidirectional DC/DC converters (BDDCs) play a fundamental role in HESS, as they manage the power flow by controlling currents and regulating the DC bus voltage. However, they encounter the challenge of uncertainties and high fluctuation power loads, necessitating the fast dynamics, stability, and high robustness of the controller. This paper proposes a novel hybrid proportional–integral and backstepping cascade controller to regulate the DC-bus voltage under uncertainties and load variations, and to control the current references of the on-boarded sources. To confirm the asymptotic stability of the whole system, a nonlinear stability analysis is conducted using the Lyapunov theorem. A power management strategy is applied to distribute the power loads and generate reference currents for the BDDCs controller. Simulations results under various driving cycles using MATLAB/Simulink demonstrate the superiority of the proposed controller compared to conventional proportional–integral and backstepping controllers. A real-time controller-hardware-in-the-loop test bench is developed to validate the effectiveness of the proposed strategy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12697\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12697\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12697","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel hybrid PI–backstepping cascade controller for battery–supercapacitor electric vehicles considering various driving cycles scenarios
The integration of supercapacitors as hybrid energy storage systems in electric vehicles has attracted the attention of many researchers and has been considered as a promising solution. Bidirectional DC/DC converters (BDDCs) play a fundamental role in HESS, as they manage the power flow by controlling currents and regulating the DC bus voltage. However, they encounter the challenge of uncertainties and high fluctuation power loads, necessitating the fast dynamics, stability, and high robustness of the controller. This paper proposes a novel hybrid proportional–integral and backstepping cascade controller to regulate the DC-bus voltage under uncertainties and load variations, and to control the current references of the on-boarded sources. To confirm the asymptotic stability of the whole system, a nonlinear stability analysis is conducted using the Lyapunov theorem. A power management strategy is applied to distribute the power loads and generate reference currents for the BDDCs controller. Simulations results under various driving cycles using MATLAB/Simulink demonstrate the superiority of the proposed controller compared to conventional proportional–integral and backstepping controllers. A real-time controller-hardware-in-the-loop test bench is developed to validate the effectiveness of the proposed strategy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.