{"title":"XO(X=Be、Mg 和 Sr)纳米片热学特性的第一原理研究","authors":"B. Abdullah, Y. H. Azeez, N. R. Abdullah","doi":"10.1142/s0217979225500675","DOIUrl":null,"url":null,"abstract":"The electronic structures and thermal properties of hexagonal XO ([Formula: see text], Mg and Sr) nanosheets are studied within the density functional theory. The thermal properties are computed using the specified structural parameters of the electronic properties. Thermal properties including entropy, enthalpy, free energy and heat capacity for XO nanosheets are reported. It is found that BeO is an insulator, whereas MgO and SrO are semiconductors based on the energy gap value within GGA and HSE06. The electronegativity and bonding nature of XO nanosheets differ, resulting in considerable variations in thermodynamic parameters that follow a similar pattern as a function of temperature. Enthalpy and entropy increase with temperature whereas free energy falls, owing to a change in the binary oxide internal energy of the system and the electron density distribution. Thermal energy absorbed by the lattices grows with increasing temperature to the point at which all of their modes are activated and the systems start to display unharmonicity deviating from a linear dependence. Variable parameter ranges for XO nanosheets are useful in the development of thermoelectric nanodevices.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"100 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles investigation of the thermal properties of XO (X=Be, Mg and Sr) nanosheet\",\"authors\":\"B. Abdullah, Y. H. Azeez, N. R. Abdullah\",\"doi\":\"10.1142/s0217979225500675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electronic structures and thermal properties of hexagonal XO ([Formula: see text], Mg and Sr) nanosheets are studied within the density functional theory. The thermal properties are computed using the specified structural parameters of the electronic properties. Thermal properties including entropy, enthalpy, free energy and heat capacity for XO nanosheets are reported. It is found that BeO is an insulator, whereas MgO and SrO are semiconductors based on the energy gap value within GGA and HSE06. The electronegativity and bonding nature of XO nanosheets differ, resulting in considerable variations in thermodynamic parameters that follow a similar pattern as a function of temperature. Enthalpy and entropy increase with temperature whereas free energy falls, owing to a change in the binary oxide internal energy of the system and the electron density distribution. Thermal energy absorbed by the lattices grows with increasing temperature to the point at which all of their modes are activated and the systems start to display unharmonicity deviating from a linear dependence. Variable parameter ranges for XO nanosheets are useful in the development of thermoelectric nanodevices.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"100 10\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
First-principles investigation of the thermal properties of XO (X=Be, Mg and Sr) nanosheet
The electronic structures and thermal properties of hexagonal XO ([Formula: see text], Mg and Sr) nanosheets are studied within the density functional theory. The thermal properties are computed using the specified structural parameters of the electronic properties. Thermal properties including entropy, enthalpy, free energy and heat capacity for XO nanosheets are reported. It is found that BeO is an insulator, whereas MgO and SrO are semiconductors based on the energy gap value within GGA and HSE06. The electronegativity and bonding nature of XO nanosheets differ, resulting in considerable variations in thermodynamic parameters that follow a similar pattern as a function of temperature. Enthalpy and entropy increase with temperature whereas free energy falls, owing to a change in the binary oxide internal energy of the system and the electron density distribution. Thermal energy absorbed by the lattices grows with increasing temperature to the point at which all of their modes are activated and the systems start to display unharmonicity deviating from a linear dependence. Variable parameter ranges for XO nanosheets are useful in the development of thermoelectric nanodevices.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.