{"title":"使用 ZnO-CuO-AgO 三金属纳米粒子的聚乙烯醇三电发电性能","authors":"Swathi Yempally, Sumalatha Bonthula, Deepalekshmi Ponnamma","doi":"10.1007/s40243-024-00264-9","DOIUrl":null,"url":null,"abstract":"<div><p>Triboelectric nanogenerators (TENGs), a new technology for gathering sustainable energy, have attracted much scientific interest. In this study, we describe a unique method for modifying the triboelectric power generation performance of Polyvinyl Alcohol (PVA) by adding ZnO–CuO–AgO (ZCA) trimetallic nanoparticles to improve the performance of TENGs and answer the requirement for ecologically benign and biodegradable materials. Hydrothermal synthesis adopted to create ZnO–CuO–AgO trimetallic nanoparticles ensures a distinctive structure with a large surface area, essential for enhancing triboelectric power generation. From the AFM results, it is evident that 1% PVA/ZCA showed the highest output voltage of 0.27V. Despite following the general trend, at higher concentrations of ZCA nanofiller in the PVA matrix, the enhancement of output voltage is not observed, which can be attributed to the non-uniform distribution. The effect of spin-coated film thickness and nanoparticle concentration on the triboelectric performance of the PVA nanogenerator is studied by monitoring the open-circuit voltage in response to various mechanical stimuli. Finally, the developed biodegradable nanogenerators in this study can be used for sustainable energy harvesting applications such as wearable electronics, self-powered sensors, and environmental monitoring systems.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"265 - 277"},"PeriodicalIF":3.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00264-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Triboelectric power generation performance of polyvinyl alcohol using ZnO–CuO–AgO trimetallic nanoparticles\",\"authors\":\"Swathi Yempally, Sumalatha Bonthula, Deepalekshmi Ponnamma\",\"doi\":\"10.1007/s40243-024-00264-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Triboelectric nanogenerators (TENGs), a new technology for gathering sustainable energy, have attracted much scientific interest. In this study, we describe a unique method for modifying the triboelectric power generation performance of Polyvinyl Alcohol (PVA) by adding ZnO–CuO–AgO (ZCA) trimetallic nanoparticles to improve the performance of TENGs and answer the requirement for ecologically benign and biodegradable materials. Hydrothermal synthesis adopted to create ZnO–CuO–AgO trimetallic nanoparticles ensures a distinctive structure with a large surface area, essential for enhancing triboelectric power generation. From the AFM results, it is evident that 1% PVA/ZCA showed the highest output voltage of 0.27V. Despite following the general trend, at higher concentrations of ZCA nanofiller in the PVA matrix, the enhancement of output voltage is not observed, which can be attributed to the non-uniform distribution. The effect of spin-coated film thickness and nanoparticle concentration on the triboelectric performance of the PVA nanogenerator is studied by monitoring the open-circuit voltage in response to various mechanical stimuli. Finally, the developed biodegradable nanogenerators in this study can be used for sustainable energy harvesting applications such as wearable electronics, self-powered sensors, and environmental monitoring systems.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"13 2\",\"pages\":\"265 - 277\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-024-00264-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-024-00264-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00264-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Triboelectric power generation performance of polyvinyl alcohol using ZnO–CuO–AgO trimetallic nanoparticles
Triboelectric nanogenerators (TENGs), a new technology for gathering sustainable energy, have attracted much scientific interest. In this study, we describe a unique method for modifying the triboelectric power generation performance of Polyvinyl Alcohol (PVA) by adding ZnO–CuO–AgO (ZCA) trimetallic nanoparticles to improve the performance of TENGs and answer the requirement for ecologically benign and biodegradable materials. Hydrothermal synthesis adopted to create ZnO–CuO–AgO trimetallic nanoparticles ensures a distinctive structure with a large surface area, essential for enhancing triboelectric power generation. From the AFM results, it is evident that 1% PVA/ZCA showed the highest output voltage of 0.27V. Despite following the general trend, at higher concentrations of ZCA nanofiller in the PVA matrix, the enhancement of output voltage is not observed, which can be attributed to the non-uniform distribution. The effect of spin-coated film thickness and nanoparticle concentration on the triboelectric performance of the PVA nanogenerator is studied by monitoring the open-circuit voltage in response to various mechanical stimuli. Finally, the developed biodegradable nanogenerators in this study can be used for sustainable energy harvesting applications such as wearable electronics, self-powered sensors, and environmental monitoring systems.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies