Avijit Baidya, Annabella Budiman, Saumya Jain, Yavuz Oz, Nasim Annabi
{"title":"制造具有抗菌特性的坚韧弹性聚乙烯醇基水凝胶","authors":"Avijit Baidya, Annabella Budiman, Saumya Jain, Yavuz Oz, Nasim Annabi","doi":"10.1002/anbr.202300173","DOIUrl":null,"url":null,"abstract":"<p>Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made toward designing hydrogels for soft tissue repair, engineering hydrogels that resemble load-bearing tissues is still considered a great challenge due to their specific mechanophysical demands. Herein, microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)-based hydrogels are reported for potential applications in repairing or replacing different load-bearing tissues. The synergy of freeze-thawing and the Hofmeister effect, which controlled the spatial arrangement and aggregation of polymer chains, facilitated the formation of microstructured frameworks with tunable porosity. While the maximum mechanical strength, toughness, and stretchability of the engineered hydrogel were ≈390 kPa, ≈388 kJ m<sup>−3</sup>, and ≈170%, respectively, Young's modulus based on compression testing wasfound to be in the range of ≈0.02–0.30 MPa, highlighting the all-in-one mechanically enriched nature of the hydrogel. Furthermore, the minimal swelling and degradation rate of the engineered hydrogel met the specific requirements for load-bearing tissues. Finally, excellent antibacterial resistance as well as in vitro biocompatibility of the hydrogel demonstrates its potential for the replacement of load-bearing tissues.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300173","citationCount":"0","resultStr":"{\"title\":\"Engineering Tough and Elastic Polyvinyl Alcohol-Based Hydrogel with Antimicrobial Properties\",\"authors\":\"Avijit Baidya, Annabella Budiman, Saumya Jain, Yavuz Oz, Nasim Annabi\",\"doi\":\"10.1002/anbr.202300173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made toward designing hydrogels for soft tissue repair, engineering hydrogels that resemble load-bearing tissues is still considered a great challenge due to their specific mechanophysical demands. Herein, microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)-based hydrogels are reported for potential applications in repairing or replacing different load-bearing tissues. The synergy of freeze-thawing and the Hofmeister effect, which controlled the spatial arrangement and aggregation of polymer chains, facilitated the formation of microstructured frameworks with tunable porosity. While the maximum mechanical strength, toughness, and stretchability of the engineered hydrogel were ≈390 kPa, ≈388 kJ m<sup>−3</sup>, and ≈170%, respectively, Young's modulus based on compression testing wasfound to be in the range of ≈0.02–0.30 MPa, highlighting the all-in-one mechanically enriched nature of the hydrogel. Furthermore, the minimal swelling and degradation rate of the engineered hydrogel met the specific requirements for load-bearing tissues. Finally, excellent antibacterial resistance as well as in vitro biocompatibility of the hydrogel demonstrates its potential for the replacement of load-bearing tissues.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Engineering Tough and Elastic Polyvinyl Alcohol-Based Hydrogel with Antimicrobial Properties
Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made toward designing hydrogels for soft tissue repair, engineering hydrogels that resemble load-bearing tissues is still considered a great challenge due to their specific mechanophysical demands. Herein, microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)-based hydrogels are reported for potential applications in repairing or replacing different load-bearing tissues. The synergy of freeze-thawing and the Hofmeister effect, which controlled the spatial arrangement and aggregation of polymer chains, facilitated the formation of microstructured frameworks with tunable porosity. While the maximum mechanical strength, toughness, and stretchability of the engineered hydrogel were ≈390 kPa, ≈388 kJ m−3, and ≈170%, respectively, Young's modulus based on compression testing wasfound to be in the range of ≈0.02–0.30 MPa, highlighting the all-in-one mechanically enriched nature of the hydrogel. Furthermore, the minimal swelling and degradation rate of the engineered hydrogel met the specific requirements for load-bearing tissues. Finally, excellent antibacterial resistance as well as in vitro biocompatibility of the hydrogel demonstrates its potential for the replacement of load-bearing tissues.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.