旋转式爆轰发动机内的极限循环振荡爆轰波行为分析

IF 1.7 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Kristyn B. Johnson May, Justin Weber, Don Ferguson, Andrew Nix, Todd G. Sidwell
{"title":"旋转式爆轰发动机内的极限循环振荡爆轰波行为分析","authors":"Kristyn B. Johnson May, Justin Weber, Don Ferguson, Andrew Nix, Todd G. Sidwell","doi":"10.2514/1.b39271","DOIUrl":null,"url":null,"abstract":"Limit cycle oscillation (LCO) detonation wave behaviors are presented and analyzed for test times exceeding 20 s in a water-cooled rotating detonation engine (RDE). LCO detonation waves exhibit cyclic acceleration and deceleration, resulting in oscillating wave spacing at unique process conditions. In previous RDE studies, similar behaviors have been studied as microsecond-scale instabilities leading to ascending or descending modal transitions. In the current work, however, LCO waves are considered a persistent wave mode, occupying unique portions of the operational envelope adjacent to those of their equally spaced counterparts. These occurrences of LCO waves are repeatable, enduring behaviors. A method to generate shifted contour surfaces specifically intended to extract and analyze wave spacing variation through time, termed limit cycle oscillation visualization (LCOV) surfaces, is presented. LCOV surfaces transform data into the reference frame of a primary traveling wave and are used to analyze quasi-steady, short-timescale, and transitional LCO modes. Results are leveraged to understand the relationship between fill height, wave strength, local wave acceleration, and subsequent LCO wave spacing for individual wave sets. Quasi-steady LCO waves display wave spacing oscillations between equal spacing values associated with [Formula: see text] wave across runs exceeding 18 s.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit Cycle Oscillating Detonation Wave Behavior Analysis Within a Rotating Detonation Engine\",\"authors\":\"Kristyn B. Johnson May, Justin Weber, Don Ferguson, Andrew Nix, Todd G. Sidwell\",\"doi\":\"10.2514/1.b39271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limit cycle oscillation (LCO) detonation wave behaviors are presented and analyzed for test times exceeding 20 s in a water-cooled rotating detonation engine (RDE). LCO detonation waves exhibit cyclic acceleration and deceleration, resulting in oscillating wave spacing at unique process conditions. In previous RDE studies, similar behaviors have been studied as microsecond-scale instabilities leading to ascending or descending modal transitions. In the current work, however, LCO waves are considered a persistent wave mode, occupying unique portions of the operational envelope adjacent to those of their equally spaced counterparts. These occurrences of LCO waves are repeatable, enduring behaviors. A method to generate shifted contour surfaces specifically intended to extract and analyze wave spacing variation through time, termed limit cycle oscillation visualization (LCOV) surfaces, is presented. LCOV surfaces transform data into the reference frame of a primary traveling wave and are used to analyze quasi-steady, short-timescale, and transitional LCO modes. Results are leveraged to understand the relationship between fill height, wave strength, local wave acceleration, and subsequent LCO wave spacing for individual wave sets. Quasi-steady LCO waves display wave spacing oscillations between equal spacing values associated with [Formula: see text] wave across runs exceeding 18 s.\",\"PeriodicalId\":16903,\"journal\":{\"name\":\"Journal of Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Propulsion and Power\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.b39271\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.b39271","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

对水冷式旋转爆轰发动机(RDE)中测试时间超过 20 秒的极限循环振荡(LCO)爆轰波行为进行了介绍和分析。LCO 爆轰波表现出周期性加速和减速,导致在独特工艺条件下产生振荡波距。在以前的 RDE 研究中,类似的行为被研究为微秒级的不稳定性,导致上升或下降的模态转换。然而,在目前的研究中,LCO 波被认为是一种持续的波模式,占据了运行包络线的独特部分,与其等间距的对应波相邻。这些 LCO 波的出现是可重复的持久行为。本文介绍了一种生成移动轮廓表面的方法,专门用于提取和分析波间距随时间的变化,称为极限周期振荡可视化(LCOV)表面。LCOV 表面将数据转换到主行波的参考框架中,用于分析准稳定、短时幅和过渡 LCO 模式。利用分析结果可以了解各个波集的填充高度、波强、局部波加速度和随后的 LCO 波间距之间的关系。准稳态 LCO 波在超过 18 秒的运行期间显示出与[公式:见正文]波相关的等间距值之间的波间距振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit Cycle Oscillating Detonation Wave Behavior Analysis Within a Rotating Detonation Engine
Limit cycle oscillation (LCO) detonation wave behaviors are presented and analyzed for test times exceeding 20 s in a water-cooled rotating detonation engine (RDE). LCO detonation waves exhibit cyclic acceleration and deceleration, resulting in oscillating wave spacing at unique process conditions. In previous RDE studies, similar behaviors have been studied as microsecond-scale instabilities leading to ascending or descending modal transitions. In the current work, however, LCO waves are considered a persistent wave mode, occupying unique portions of the operational envelope adjacent to those of their equally spaced counterparts. These occurrences of LCO waves are repeatable, enduring behaviors. A method to generate shifted contour surfaces specifically intended to extract and analyze wave spacing variation through time, termed limit cycle oscillation visualization (LCOV) surfaces, is presented. LCOV surfaces transform data into the reference frame of a primary traveling wave and are used to analyze quasi-steady, short-timescale, and transitional LCO modes. Results are leveraged to understand the relationship between fill height, wave strength, local wave acceleration, and subsequent LCO wave spacing for individual wave sets. Quasi-steady LCO waves display wave spacing oscillations between equal spacing values associated with [Formula: see text] wave across runs exceeding 18 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Propulsion and Power
Journal of Propulsion and Power 工程技术-工程:宇航
CiteScore
4.20
自引率
21.10%
发文量
97
审稿时长
6.5 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信