{"title":"面向智能制造应用的容器化通信微服务自动部署机制","authors":"Hsiang-Yu Chuang, Shang-Liang Chen","doi":"10.1177/09544054241249777","DOIUrl":null,"url":null,"abstract":"To swiftly and reliably monitor various information and the operational status of machinery across large smart manufacturing sites, this study introduces the use of LPWAN multi-mode network communication technology. This technology can automatically switch between LoRa and NB-IoT modes based on signal strength to ensure communication stability. Through wireless communication technologies such as LoRa and NB-IoT, the status information of machinery can be transmitted back to the cloud in real-time, facilitating user management. However, LPWAN multi-mode network communication modules often adopt a monolithic architecture, making maintenance and upgrades more difficult. When an application within the module needs upgrading, not only must the consistency between the development environment and the execution environment be ensured, but also a significant amount of time and resources must be spent on on-site deployment. With the development of cloud computing and virtualization technologies, containerized microservices architecture, which focuses on replacing functional modules with services, is set to become the mainstream for future industrial applications. Therefore, this study proposes a remote communication architecture based on container and microservices technologies. Utilizing the concept of microservices, this architecture divides LPWAN multi-mode network communication modules based on different functionalities and offers them to users in a more flexible service manner through containerization technology. This study also designs a mechanism to automate the entire service construction process, followed by the implementation of communication services’ automatic deployment through container management tools. Compared to manual deployment, this significantly reduces the waste of time and human resources. Finally, this study uses a large mobile pumping unit as a practical application case to verify the feasibility of the proposed architecture. In the context of flood prevention and disaster relief, large mobile pumping units are widely used to solve flooding issues. These pumps are often deployed in dangerous areas with poor signal reception, thereby also validating the value of the proposed architecture.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"16 9","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated deployment mechanism of containerized communication micro-services for smart manufacturing applications\",\"authors\":\"Hsiang-Yu Chuang, Shang-Liang Chen\",\"doi\":\"10.1177/09544054241249777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To swiftly and reliably monitor various information and the operational status of machinery across large smart manufacturing sites, this study introduces the use of LPWAN multi-mode network communication technology. This technology can automatically switch between LoRa and NB-IoT modes based on signal strength to ensure communication stability. Through wireless communication technologies such as LoRa and NB-IoT, the status information of machinery can be transmitted back to the cloud in real-time, facilitating user management. However, LPWAN multi-mode network communication modules often adopt a monolithic architecture, making maintenance and upgrades more difficult. When an application within the module needs upgrading, not only must the consistency between the development environment and the execution environment be ensured, but also a significant amount of time and resources must be spent on on-site deployment. With the development of cloud computing and virtualization technologies, containerized microservices architecture, which focuses on replacing functional modules with services, is set to become the mainstream for future industrial applications. Therefore, this study proposes a remote communication architecture based on container and microservices technologies. Utilizing the concept of microservices, this architecture divides LPWAN multi-mode network communication modules based on different functionalities and offers them to users in a more flexible service manner through containerization technology. This study also designs a mechanism to automate the entire service construction process, followed by the implementation of communication services’ automatic deployment through container management tools. Compared to manual deployment, this significantly reduces the waste of time and human resources. Finally, this study uses a large mobile pumping unit as a practical application case to verify the feasibility of the proposed architecture. In the context of flood prevention and disaster relief, large mobile pumping units are widely used to solve flooding issues. These pumps are often deployed in dangerous areas with poor signal reception, thereby also validating the value of the proposed architecture.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241249777\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241249777","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Automated deployment mechanism of containerized communication micro-services for smart manufacturing applications
To swiftly and reliably monitor various information and the operational status of machinery across large smart manufacturing sites, this study introduces the use of LPWAN multi-mode network communication technology. This technology can automatically switch between LoRa and NB-IoT modes based on signal strength to ensure communication stability. Through wireless communication technologies such as LoRa and NB-IoT, the status information of machinery can be transmitted back to the cloud in real-time, facilitating user management. However, LPWAN multi-mode network communication modules often adopt a monolithic architecture, making maintenance and upgrades more difficult. When an application within the module needs upgrading, not only must the consistency between the development environment and the execution environment be ensured, but also a significant amount of time and resources must be spent on on-site deployment. With the development of cloud computing and virtualization technologies, containerized microservices architecture, which focuses on replacing functional modules with services, is set to become the mainstream for future industrial applications. Therefore, this study proposes a remote communication architecture based on container and microservices technologies. Utilizing the concept of microservices, this architecture divides LPWAN multi-mode network communication modules based on different functionalities and offers them to users in a more flexible service manner through containerization technology. This study also designs a mechanism to automate the entire service construction process, followed by the implementation of communication services’ automatic deployment through container management tools. Compared to manual deployment, this significantly reduces the waste of time and human resources. Finally, this study uses a large mobile pumping unit as a practical application case to verify the feasibility of the proposed architecture. In the context of flood prevention and disaster relief, large mobile pumping units are widely used to solve flooding issues. These pumps are often deployed in dangerous areas with poor signal reception, thereby also validating the value of the proposed architecture.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.