{"title":"相场模拟为腐蚀研究开辟新天地","authors":"E. Martínez-Pañeda","doi":"10.1557/s43577-024-00715-8","DOIUrl":null,"url":null,"abstract":"\n \n This article overviews a new, recent success of phase-field modeling: its application to predicting the evolution of the corrosion front and the associated structural integrity challenges. Despite its important implications for society, predicting corrosion damage has been an elusive goal for scientists and engineers. The application of phase-field modeling to corrosion not only enables tracking the electrolyte–metal interface, but also provides an avenue to explicitly simulate the underlying mesoscale physical processes. This lays the groundwork for developing the first generation of mechanistic corrosion models, which can capture key phenomena such as film rupture and repassivation, the transition from activation- to diffusion-controlled corrosion, interactions with mechanical fields, microstructural and electrochemical effects, intergranular corrosion, material biodegradation, and the interplay with other environmentally assisted damage phenomena such as hydrogen embrittlement.\n \n \n \n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-field simulations opening new horizons in corrosion research\",\"authors\":\"E. Martínez-Pañeda\",\"doi\":\"10.1557/s43577-024-00715-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This article overviews a new, recent success of phase-field modeling: its application to predicting the evolution of the corrosion front and the associated structural integrity challenges. Despite its important implications for society, predicting corrosion damage has been an elusive goal for scientists and engineers. The application of phase-field modeling to corrosion not only enables tracking the electrolyte–metal interface, but also provides an avenue to explicitly simulate the underlying mesoscale physical processes. This lays the groundwork for developing the first generation of mechanistic corrosion models, which can capture key phenomena such as film rupture and repassivation, the transition from activation- to diffusion-controlled corrosion, interactions with mechanical fields, microstructural and electrochemical effects, intergranular corrosion, material biodegradation, and the interplay with other environmentally assisted damage phenomena such as hydrogen embrittlement.\\n \\n \\n \\n\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-024-00715-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00715-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Phase-field simulations opening new horizons in corrosion research
This article overviews a new, recent success of phase-field modeling: its application to predicting the evolution of the corrosion front and the associated structural integrity challenges. Despite its important implications for society, predicting corrosion damage has been an elusive goal for scientists and engineers. The application of phase-field modeling to corrosion not only enables tracking the electrolyte–metal interface, but also provides an avenue to explicitly simulate the underlying mesoscale physical processes. This lays the groundwork for developing the first generation of mechanistic corrosion models, which can capture key phenomena such as film rupture and repassivation, the transition from activation- to diffusion-controlled corrosion, interactions with mechanical fields, microstructural and electrochemical effects, intergranular corrosion, material biodegradation, and the interplay with other environmentally assisted damage phenomena such as hydrogen embrittlement.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.