Saran Lotfollahzadeh, Asha Jose, Esha Shafiq zarnaab, Nourhan El Sherif, Michael Smith, Jingyan Han, Francesca Seta, V. Chitalia
{"title":"两种高产率分离大鼠主动脉平滑肌细胞的方法","authors":"Saran Lotfollahzadeh, Asha Jose, Esha Shafiq zarnaab, Nourhan El Sherif, Michael Smith, Jingyan Han, Francesca Seta, V. Chitalia","doi":"10.1093/biomethods/bpae038","DOIUrl":null,"url":null,"abstract":"\n Vascular smooth muscle cells (VSMCs) are an integral part of blood vessels and are the focus of intensive research in vascular biology, translational research, and cardiovascular diseases. Though immortalized vascular smooth muscle cell lines are available, their use is limited, underscoring the need for primary VSMCs. There are several methods for isolating primary cells from mice. However, the isolation method from rat blood vessels requires optimization, given the differences in the aorta of mice and rats. Here we compare two methods for VSMCs isolation from rats: enzymatic digestion and the “block” method. We observed a significantly higher yield of VSMCs using the enzymatic digestion method. We further confirmed that VSMCs expressed well-established VSMC-specific markers (calponin) with both methods and observed the persistence of this marker up to 9 passages, suggesting a continuation of the secretory phenotype of VSMCs. Overall, this work compares two methods and demonstrates a practical and effective method for isolating VSMCs from rat aorta, providing vascular biologists with a valuable and reliable experimental tool.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"40 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two methods of isolation of rat aortic smooth muscle cells with high yield\",\"authors\":\"Saran Lotfollahzadeh, Asha Jose, Esha Shafiq zarnaab, Nourhan El Sherif, Michael Smith, Jingyan Han, Francesca Seta, V. Chitalia\",\"doi\":\"10.1093/biomethods/bpae038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Vascular smooth muscle cells (VSMCs) are an integral part of blood vessels and are the focus of intensive research in vascular biology, translational research, and cardiovascular diseases. Though immortalized vascular smooth muscle cell lines are available, their use is limited, underscoring the need for primary VSMCs. There are several methods for isolating primary cells from mice. However, the isolation method from rat blood vessels requires optimization, given the differences in the aorta of mice and rats. Here we compare two methods for VSMCs isolation from rats: enzymatic digestion and the “block” method. We observed a significantly higher yield of VSMCs using the enzymatic digestion method. We further confirmed that VSMCs expressed well-established VSMC-specific markers (calponin) with both methods and observed the persistence of this marker up to 9 passages, suggesting a continuation of the secretory phenotype of VSMCs. Overall, this work compares two methods and demonstrates a practical and effective method for isolating VSMCs from rat aorta, providing vascular biologists with a valuable and reliable experimental tool.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"40 6\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomethods/bpae038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Two methods of isolation of rat aortic smooth muscle cells with high yield
Vascular smooth muscle cells (VSMCs) are an integral part of blood vessels and are the focus of intensive research in vascular biology, translational research, and cardiovascular diseases. Though immortalized vascular smooth muscle cell lines are available, their use is limited, underscoring the need for primary VSMCs. There are several methods for isolating primary cells from mice. However, the isolation method from rat blood vessels requires optimization, given the differences in the aorta of mice and rats. Here we compare two methods for VSMCs isolation from rats: enzymatic digestion and the “block” method. We observed a significantly higher yield of VSMCs using the enzymatic digestion method. We further confirmed that VSMCs expressed well-established VSMC-specific markers (calponin) with both methods and observed the persistence of this marker up to 9 passages, suggesting a continuation of the secretory phenotype of VSMCs. Overall, this work compares two methods and demonstrates a practical and effective method for isolating VSMCs from rat aorta, providing vascular biologists with a valuable and reliable experimental tool.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.