形态精度数据聚类:增强聚类分析的新算法

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abdel Fatah Azzam, A. Maghrabi, Eman El-Naqeeb, Mohammed Aldawood, H. ElGhawalby
{"title":"形态精度数据聚类:增强聚类分析的新算法","authors":"Abdel Fatah Azzam, A. Maghrabi, Eman El-Naqeeb, Mohammed Aldawood, H. ElGhawalby","doi":"10.1155/2024/3795126","DOIUrl":null,"url":null,"abstract":"In today’s data-driven world, we are constantly exposed to a vast amount of information. This information is stored in various information systems and is used for analysis and management purposes. One important approach to handle these data is through the process of clustering or categorization. Clustering algorithms are powerful tools used in data analysis and machine learning to group similar data points together based on their inherent characteristics. These algorithms aim to identify patterns and structures within a dataset, allowing for the discovery of hidden relationships and insights. By partitioning data into distinct clusters, clustering algorithms enable efficient data exploration, classification, and anomaly detection. In this study, we propose a novel centroid-based clustering algorithm, namely, the morphological accuracy clustering algorithm (MAC algorithm). The proposed algorithm uses a morphological accuracy measure to define the centroid of the cluster. The empirical results demonstrate that the proposed algorithm achieves a stable clustering outcome in fewer iterations compared to several existing centroid-based clustering algorithms. Additionally, the clusters generated by these existing algorithms are highly susceptible to the initial centroid selection made by the user.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological Accuracy Data Clustering: A Novel Algorithm for Enhanced Cluster Analysis\",\"authors\":\"Abdel Fatah Azzam, A. Maghrabi, Eman El-Naqeeb, Mohammed Aldawood, H. ElGhawalby\",\"doi\":\"10.1155/2024/3795126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s data-driven world, we are constantly exposed to a vast amount of information. This information is stored in various information systems and is used for analysis and management purposes. One important approach to handle these data is through the process of clustering or categorization. Clustering algorithms are powerful tools used in data analysis and machine learning to group similar data points together based on their inherent characteristics. These algorithms aim to identify patterns and structures within a dataset, allowing for the discovery of hidden relationships and insights. By partitioning data into distinct clusters, clustering algorithms enable efficient data exploration, classification, and anomaly detection. In this study, we propose a novel centroid-based clustering algorithm, namely, the morphological accuracy clustering algorithm (MAC algorithm). The proposed algorithm uses a morphological accuracy measure to define the centroid of the cluster. The empirical results demonstrate that the proposed algorithm achieves a stable clustering outcome in fewer iterations compared to several existing centroid-based clustering algorithms. Additionally, the clusters generated by these existing algorithms are highly susceptible to the initial centroid selection made by the user.\",\"PeriodicalId\":44894,\"journal\":{\"name\":\"Applied Computational Intelligence and Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Intelligence and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3795126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3795126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在数据驱动的当今世界,我们不断接触到大量信息。这些信息存储在各种信息系统中,用于分析和管理。处理这些数据的一个重要方法就是进行聚类或分类。聚类算法是数据分析和机器学习中使用的强大工具,可根据相似数据点的固有特征将其归类。这些算法旨在识别数据集中的模式和结构,从而发现隐藏的关系和见解。通过将数据划分为不同的群组,聚类算法可以实现高效的数据探索、分类和异常检测。在本研究中,我们提出了一种新颖的基于中心点的聚类算法,即形态精度聚类算法(MAC 算法)。该算法使用形态准确度来定义聚类的中心点。实证结果表明,与现有的几种基于中心点的聚类算法相比,所提出的算法能以较少的迭代次数获得稳定的聚类结果。此外,这些现有算法生成的聚类极易受用户初始中心点选择的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological Accuracy Data Clustering: A Novel Algorithm for Enhanced Cluster Analysis
In today’s data-driven world, we are constantly exposed to a vast amount of information. This information is stored in various information systems and is used for analysis and management purposes. One important approach to handle these data is through the process of clustering or categorization. Clustering algorithms are powerful tools used in data analysis and machine learning to group similar data points together based on their inherent characteristics. These algorithms aim to identify patterns and structures within a dataset, allowing for the discovery of hidden relationships and insights. By partitioning data into distinct clusters, clustering algorithms enable efficient data exploration, classification, and anomaly detection. In this study, we propose a novel centroid-based clustering algorithm, namely, the morphological accuracy clustering algorithm (MAC algorithm). The proposed algorithm uses a morphological accuracy measure to define the centroid of the cluster. The empirical results demonstrate that the proposed algorithm achieves a stable clustering outcome in fewer iterations compared to several existing centroid-based clustering algorithms. Additionally, the clusters generated by these existing algorithms are highly susceptible to the initial centroid selection made by the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computational Intelligence and Soft Computing
Applied Computational Intelligence and Soft Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
6.10
自引率
3.40%
发文量
59
审稿时长
21 weeks
期刊介绍: Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信