{"title":"ZNF2-DOPED GA2O3 薄膜的生长和物理特性研究","authors":"Sufen Wei, Chia-Yang Kao, Zhi-Ting Su, En-Chi Tsao, Guo-Syun Chen, Cheng-Fu Yang, Jui-Yang Chang","doi":"10.1142/s0217979225400193","DOIUrl":null,"url":null,"abstract":"This study began by preparing gallium oxide (Ga2O3) doped with zinc fluoride (ZnF2) and manufacturing a target material. Subsequently, electron beam (e-beam) deposition was employed to coat silicon substrates with the prepared material. Different heat treatment conditions were applied to the deposited films, followed by material and electrical property analyses. The investigation explored the impact of pre-sintering Ga2O3 at 950°C to transform it into a more stable [Formula: see text]-phase. For comparative purposes, some samples underwent annealing at 600°C in a nitrogen–hydrogen (95% N[Formula: see text] H2, abbreviated as N[Formula: see text]) mixed gas, which was used as a reduction atmosphere, to increase oxygen vacancies in the ZnF2-doped Ga2O3 thin films and consequently enhance their conductivity. The deposited ZnF2-doped Ga2O3 thin films initially exhibited an amorphous phase, with diffraction peaks appearing only after a 600°C annealing process. Pre-sintering Ga2O3 powder at 950°C promoted the emergence of the [Formula: see text]-phase, and the bandgap value increased after annealing. Measurements using B1500A revealed that sintering and annealing ZnF2-doped Ga2O3 thin films were essential steps to enhance their conductivity. X-ray photoelectron spectroscopy (XPS) further confirmed a significant correlation between the conductivity variation and the concentration of oxygen vacancies. Additionally, it was observed that the use of an N[Formula: see text] mixed gas further increased the presence of oxygen vacancies in the films. The results of this study provide an important method to make Ga2O3 thin films with conductivity, which can be utilized in the fabrication of Ga2O3 thin-film-based semiconductor devices in the future.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations of the growth and physical characteristics of ZNF2-DOPED GA2O3 thin films\",\"authors\":\"Sufen Wei, Chia-Yang Kao, Zhi-Ting Su, En-Chi Tsao, Guo-Syun Chen, Cheng-Fu Yang, Jui-Yang Chang\",\"doi\":\"10.1142/s0217979225400193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study began by preparing gallium oxide (Ga2O3) doped with zinc fluoride (ZnF2) and manufacturing a target material. Subsequently, electron beam (e-beam) deposition was employed to coat silicon substrates with the prepared material. Different heat treatment conditions were applied to the deposited films, followed by material and electrical property analyses. The investigation explored the impact of pre-sintering Ga2O3 at 950°C to transform it into a more stable [Formula: see text]-phase. For comparative purposes, some samples underwent annealing at 600°C in a nitrogen–hydrogen (95% N[Formula: see text] H2, abbreviated as N[Formula: see text]) mixed gas, which was used as a reduction atmosphere, to increase oxygen vacancies in the ZnF2-doped Ga2O3 thin films and consequently enhance their conductivity. The deposited ZnF2-doped Ga2O3 thin films initially exhibited an amorphous phase, with diffraction peaks appearing only after a 600°C annealing process. Pre-sintering Ga2O3 powder at 950°C promoted the emergence of the [Formula: see text]-phase, and the bandgap value increased after annealing. Measurements using B1500A revealed that sintering and annealing ZnF2-doped Ga2O3 thin films were essential steps to enhance their conductivity. X-ray photoelectron spectroscopy (XPS) further confirmed a significant correlation between the conductivity variation and the concentration of oxygen vacancies. Additionally, it was observed that the use of an N[Formula: see text] mixed gas further increased the presence of oxygen vacancies in the films. The results of this study provide an important method to make Ga2O3 thin films with conductivity, which can be utilized in the fabrication of Ga2O3 thin-film-based semiconductor devices in the future.\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225400193\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225400193","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Investigations of the growth and physical characteristics of ZNF2-DOPED GA2O3 thin films
This study began by preparing gallium oxide (Ga2O3) doped with zinc fluoride (ZnF2) and manufacturing a target material. Subsequently, electron beam (e-beam) deposition was employed to coat silicon substrates with the prepared material. Different heat treatment conditions were applied to the deposited films, followed by material and electrical property analyses. The investigation explored the impact of pre-sintering Ga2O3 at 950°C to transform it into a more stable [Formula: see text]-phase. For comparative purposes, some samples underwent annealing at 600°C in a nitrogen–hydrogen (95% N[Formula: see text] H2, abbreviated as N[Formula: see text]) mixed gas, which was used as a reduction atmosphere, to increase oxygen vacancies in the ZnF2-doped Ga2O3 thin films and consequently enhance their conductivity. The deposited ZnF2-doped Ga2O3 thin films initially exhibited an amorphous phase, with diffraction peaks appearing only after a 600°C annealing process. Pre-sintering Ga2O3 powder at 950°C promoted the emergence of the [Formula: see text]-phase, and the bandgap value increased after annealing. Measurements using B1500A revealed that sintering and annealing ZnF2-doped Ga2O3 thin films were essential steps to enhance their conductivity. X-ray photoelectron spectroscopy (XPS) further confirmed a significant correlation between the conductivity variation and the concentration of oxygen vacancies. Additionally, it was observed that the use of an N[Formula: see text] mixed gas further increased the presence of oxygen vacancies in the films. The results of this study provide an important method to make Ga2O3 thin films with conductivity, which can be utilized in the fabrication of Ga2O3 thin-film-based semiconductor devices in the future.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.