Bin Liu, Wenbin Jiang, Xiangge He, Pengfei Wen, Min Zhang
{"title":"利用基于分布式声学传感的光纤牵引流媒体进行高密度近海地震勘探:概念与应用","authors":"Bin Liu, Wenbin Jiang, Xiangge He, Pengfei Wen, Min Zhang","doi":"10.1111/1365-2478.13535","DOIUrl":null,"url":null,"abstract":"Seismic technique is widely used to image the subsurface geology for oil and gas exploration. The image quality depends on the spatial sampling density. However, it is challenging and expensive to acquire high‐density seismic data, particularly in the marine environment. Distributed acoustic sensing data are increasingly used in data acquisition because of their low cost and dense spatial sampling. Here, we present a novel type of high‐density towed streamer based on distributed acoustic sensing technology and report the results of a sea trial. This sea trial was conducted in a gas hydrate province as the major driver to develop this technique is to better characterize gas hydrate deposits. Throughout the experiment, several high‐quality datasets were obtained, and parameters like source energies and filler materials were examined. The trace interval of distributed acoustic sensing streamer data reaches 1 m, which is a significant improvement over the usual 3.125 or 6.25 m in the conventional towed streamer. A detailed analysis was carried out from three different perspectives: amplitude, noise and frequency. One of the datasets was further processed following a routine workflow to obtain the final image. Though direct comparison with the image obtained by a conventional towed streamer along a coincident line is not available, the comparison with the previous image from a nearby line shows the improvement in resolution. The final image is of good quality and the presence of gas hydrate could be inferred. The sea trial results demonstrate the feasibility of the use of a distributed acoustic sensing optical fibre streamer in acquiring high‐density seismic data in the marine environment.","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐density offshore seismic exploration with an optical fibre towed streamer based on distributed acoustic sensing: Concept and application\",\"authors\":\"Bin Liu, Wenbin Jiang, Xiangge He, Pengfei Wen, Min Zhang\",\"doi\":\"10.1111/1365-2478.13535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic technique is widely used to image the subsurface geology for oil and gas exploration. The image quality depends on the spatial sampling density. However, it is challenging and expensive to acquire high‐density seismic data, particularly in the marine environment. Distributed acoustic sensing data are increasingly used in data acquisition because of their low cost and dense spatial sampling. Here, we present a novel type of high‐density towed streamer based on distributed acoustic sensing technology and report the results of a sea trial. This sea trial was conducted in a gas hydrate province as the major driver to develop this technique is to better characterize gas hydrate deposits. Throughout the experiment, several high‐quality datasets were obtained, and parameters like source energies and filler materials were examined. The trace interval of distributed acoustic sensing streamer data reaches 1 m, which is a significant improvement over the usual 3.125 or 6.25 m in the conventional towed streamer. A detailed analysis was carried out from three different perspectives: amplitude, noise and frequency. One of the datasets was further processed following a routine workflow to obtain the final image. Though direct comparison with the image obtained by a conventional towed streamer along a coincident line is not available, the comparison with the previous image from a nearby line shows the improvement in resolution. The final image is of good quality and the presence of gas hydrate could be inferred. The sea trial results demonstrate the feasibility of the use of a distributed acoustic sensing optical fibre streamer in acquiring high‐density seismic data in the marine environment.\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/1365-2478.13535\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/1365-2478.13535","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
High‐density offshore seismic exploration with an optical fibre towed streamer based on distributed acoustic sensing: Concept and application
Seismic technique is widely used to image the subsurface geology for oil and gas exploration. The image quality depends on the spatial sampling density. However, it is challenging and expensive to acquire high‐density seismic data, particularly in the marine environment. Distributed acoustic sensing data are increasingly used in data acquisition because of their low cost and dense spatial sampling. Here, we present a novel type of high‐density towed streamer based on distributed acoustic sensing technology and report the results of a sea trial. This sea trial was conducted in a gas hydrate province as the major driver to develop this technique is to better characterize gas hydrate deposits. Throughout the experiment, several high‐quality datasets were obtained, and parameters like source energies and filler materials were examined. The trace interval of distributed acoustic sensing streamer data reaches 1 m, which is a significant improvement over the usual 3.125 or 6.25 m in the conventional towed streamer. A detailed analysis was carried out from three different perspectives: amplitude, noise and frequency. One of the datasets was further processed following a routine workflow to obtain the final image. Though direct comparison with the image obtained by a conventional towed streamer along a coincident line is not available, the comparison with the previous image from a nearby line shows the improvement in resolution. The final image is of good quality and the presence of gas hydrate could be inferred. The sea trial results demonstrate the feasibility of the use of a distributed acoustic sensing optical fibre streamer in acquiring high‐density seismic data in the marine environment.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.