{"title":"掺杂锌的六方 Ba3(VO4)2 的微波吸收特性:Ba3-xZnx(VO4)2 的综合分析","authors":"Praveen Chenna, S. Gandi, Sahil Sharma, Saran Srihari Sripada Panda, Sadi Reddy Parne","doi":"10.1149/2162-8777/ad4f13","DOIUrl":null,"url":null,"abstract":"\n The current study explores the influence of Zinc (Zn) doping on the crystallography, optical behavior, dielectric properties, and microwave absorption characteristics of hexagonal Barium Vanadate (Ba3(VO4)2). Samples were systematically synthesized with Zn doping concentrations of x=0, 0.05, 0.1, 0.15, and 0.2 mol%, resulting in Ba3-xZnx(VO4)2. Employing various characterization techniques, the alterations in structural, optical, and electrical responses due to incremental Zn incorporation are reported. The UV–VIS DRS absorption spectra reveal a decrease in energy bandgap with increasing concentration of Zn. The lowest optical energy band gap observed was 3.65 eV for x=0.2 mol% Zn. Notably, at a thickness of 6.5 mm, the material achieved a high reflection loss of -82.37 dB at 12.47 GHz for x=0.05 mol% of Zn. Similarly, the same material configuration exhibited a maximum effective absorption bandwidth (EAB) of 5.01 GHz, spanning a frequency range from 12.24 to 17.25 GHz when the thickness was set to 5.5 mm. Furthermore, as the Zn concentration increased from x=0.05 to 0.2 mol%, a decreasing trend in reflection loss was observed, correlating well with the dielectric parameters of samples with different Zn concentrations. The work provides insightful correlations between Zn doping levels and the material’s performance in potential applications ranging from optoelectronics to electromagnetic wave absorption.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave Absorption Properties of Hexagonal Ba3(VO4)2 through Zn Doping: A Comprehensive Analysis of Ba3-xZnx(VO4)2\",\"authors\":\"Praveen Chenna, S. Gandi, Sahil Sharma, Saran Srihari Sripada Panda, Sadi Reddy Parne\",\"doi\":\"10.1149/2162-8777/ad4f13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The current study explores the influence of Zinc (Zn) doping on the crystallography, optical behavior, dielectric properties, and microwave absorption characteristics of hexagonal Barium Vanadate (Ba3(VO4)2). Samples were systematically synthesized with Zn doping concentrations of x=0, 0.05, 0.1, 0.15, and 0.2 mol%, resulting in Ba3-xZnx(VO4)2. Employing various characterization techniques, the alterations in structural, optical, and electrical responses due to incremental Zn incorporation are reported. The UV–VIS DRS absorption spectra reveal a decrease in energy bandgap with increasing concentration of Zn. The lowest optical energy band gap observed was 3.65 eV for x=0.2 mol% Zn. Notably, at a thickness of 6.5 mm, the material achieved a high reflection loss of -82.37 dB at 12.47 GHz for x=0.05 mol% of Zn. Similarly, the same material configuration exhibited a maximum effective absorption bandwidth (EAB) of 5.01 GHz, spanning a frequency range from 12.24 to 17.25 GHz when the thickness was set to 5.5 mm. Furthermore, as the Zn concentration increased from x=0.05 to 0.2 mol%, a decreasing trend in reflection loss was observed, correlating well with the dielectric parameters of samples with different Zn concentrations. The work provides insightful correlations between Zn doping levels and the material’s performance in potential applications ranging from optoelectronics to electromagnetic wave absorption.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad4f13\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad4f13","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microwave Absorption Properties of Hexagonal Ba3(VO4)2 through Zn Doping: A Comprehensive Analysis of Ba3-xZnx(VO4)2
The current study explores the influence of Zinc (Zn) doping on the crystallography, optical behavior, dielectric properties, and microwave absorption characteristics of hexagonal Barium Vanadate (Ba3(VO4)2). Samples were systematically synthesized with Zn doping concentrations of x=0, 0.05, 0.1, 0.15, and 0.2 mol%, resulting in Ba3-xZnx(VO4)2. Employing various characterization techniques, the alterations in structural, optical, and electrical responses due to incremental Zn incorporation are reported. The UV–VIS DRS absorption spectra reveal a decrease in energy bandgap with increasing concentration of Zn. The lowest optical energy band gap observed was 3.65 eV for x=0.2 mol% Zn. Notably, at a thickness of 6.5 mm, the material achieved a high reflection loss of -82.37 dB at 12.47 GHz for x=0.05 mol% of Zn. Similarly, the same material configuration exhibited a maximum effective absorption bandwidth (EAB) of 5.01 GHz, spanning a frequency range from 12.24 to 17.25 GHz when the thickness was set to 5.5 mm. Furthermore, as the Zn concentration increased from x=0.05 to 0.2 mol%, a decreasing trend in reflection loss was observed, correlating well with the dielectric parameters of samples with different Zn concentrations. The work provides insightful correlations between Zn doping levels and the material’s performance in potential applications ranging from optoelectronics to electromagnetic wave absorption.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.