伽马射线光谱仪脉冲高度光谱中的退化堆积校正

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Giulia Marcer, Andrea Dal Molin, Marica Rebai, Davide Rigamonti, Marco Tardocchi
{"title":"伽马射线光谱仪脉冲高度光谱中的退化堆积校正","authors":"Giulia Marcer,&nbsp;Andrea Dal Molin,&nbsp;Marica Rebai,&nbsp;Davide Rigamonti,&nbsp;Marco Tardocchi","doi":"10.1007/s10894-024-00409-8","DOIUrl":null,"url":null,"abstract":"<div><p>One of the primary obstacles faced by spectrometers operating under high counting rates is pile-up, which occurs when two or more events are detected within a timelapse short enough to result in a superposition of the events waveforms. These can not hence be integrated separately in order to get their amplitudes. Piled-up events are typically identified using pile-up rejection or recovery algorithms. In the latter case, the constituent single waveforms and their amplitudes are also restored. However, there are instances in which the pulses overlap so closely that it is impossible to identify the occurrence of pile-up, resulting in the integration of these pulses into a single spurious event. This phenomenon is known as degenerate pile-up. A method to rectify the incorrect reconstruction of degenerate pile-up was developed, based on a statistical approach, which can be directly applied to the pulse height spectra distributions. The approach was tested on a number of synthetic spectra, with counting rates ranging from 20 kHz up to 1 MHz. The recovered spectra were compared to those purely analysed with a pile-up recovery algorithm, demonstrating an improvement of the reconstructed spectrum of several tens of percent when compared to the true synthetic counterpart.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00409-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Degenerate Pile-up Correction in Pulse Height Spectra from Gamma-ray Spectrometers\",\"authors\":\"Giulia Marcer,&nbsp;Andrea Dal Molin,&nbsp;Marica Rebai,&nbsp;Davide Rigamonti,&nbsp;Marco Tardocchi\",\"doi\":\"10.1007/s10894-024-00409-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the primary obstacles faced by spectrometers operating under high counting rates is pile-up, which occurs when two or more events are detected within a timelapse short enough to result in a superposition of the events waveforms. These can not hence be integrated separately in order to get their amplitudes. Piled-up events are typically identified using pile-up rejection or recovery algorithms. In the latter case, the constituent single waveforms and their amplitudes are also restored. However, there are instances in which the pulses overlap so closely that it is impossible to identify the occurrence of pile-up, resulting in the integration of these pulses into a single spurious event. This phenomenon is known as degenerate pile-up. A method to rectify the incorrect reconstruction of degenerate pile-up was developed, based on a statistical approach, which can be directly applied to the pulse height spectra distributions. The approach was tested on a number of synthetic spectra, with counting rates ranging from 20 kHz up to 1 MHz. The recovered spectra were compared to those purely analysed with a pile-up recovery algorithm, demonstrating an improvement of the reconstructed spectrum of several tens of percent when compared to the true synthetic counterpart.</p></div>\",\"PeriodicalId\":634,\"journal\":{\"name\":\"Journal of Fusion Energy\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10894-024-00409-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fusion Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10894-024-00409-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-024-00409-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在高计数率下运行的光谱仪所面临的主要障碍之一是叠加现象,即在足够短的延时内检测到两个或多个事件,从而导致事件波形的叠加。因此,无法对这些波形进行单独积分,以获得它们的振幅。叠加事件通常使用叠加剔除或恢复算法来识别。在后一种情况下,组成的单个波形及其振幅也会得到恢复。然而,在某些情况下,脉冲重叠非常紧密,以至于无法识别堆积事件的发生,从而将这些脉冲整合为一个单一的虚假事件。这种现象被称为退化堆积。我们开发了一种基于统计方法的方法来纠正退化堆积的错误重建,该方法可直接应用于脉冲高度谱分布。该方法在一些合成光谱上进行了测试,计数率从 20 kHz 到 1 MHz 不等。将恢复的光谱与使用堆积恢复算法进行纯分析的光谱进行了比较,结果表明,与真正的合成光谱相比,重建的光谱提高了几十个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Degenerate Pile-up Correction in Pulse Height Spectra from Gamma-ray Spectrometers

Degenerate Pile-up Correction in Pulse Height Spectra from Gamma-ray Spectrometers

One of the primary obstacles faced by spectrometers operating under high counting rates is pile-up, which occurs when two or more events are detected within a timelapse short enough to result in a superposition of the events waveforms. These can not hence be integrated separately in order to get their amplitudes. Piled-up events are typically identified using pile-up rejection or recovery algorithms. In the latter case, the constituent single waveforms and their amplitudes are also restored. However, there are instances in which the pulses overlap so closely that it is impossible to identify the occurrence of pile-up, resulting in the integration of these pulses into a single spurious event. This phenomenon is known as degenerate pile-up. A method to rectify the incorrect reconstruction of degenerate pile-up was developed, based on a statistical approach, which can be directly applied to the pulse height spectra distributions. The approach was tested on a number of synthetic spectra, with counting rates ranging from 20 kHz up to 1 MHz. The recovered spectra were compared to those purely analysed with a pile-up recovery algorithm, demonstrating an improvement of the reconstructed spectrum of several tens of percent when compared to the true synthetic counterpart.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信