通过自由场爆破和裂隙成像研究低过压时头盔与头顶冲击波的相互作用

IF 1.7 4区 工程技术 Q3 MECHANICS
C. J. H. Thomas, C. E. Johnson
{"title":"通过自由场爆破和裂隙成像研究低过压时头盔与头顶冲击波的相互作用","authors":"C. J. H. Thomas,&nbsp;C. E. Johnson","doi":"10.1007/s00193-024-01167-4","DOIUrl":null,"url":null,"abstract":"<div><p>Brain injuries in warfighters due to low-level blasts, even while wearing a helmet, are common. Understanding how the form of a shock wave changes when impacting a head donning a helmet may present solutions to reducing shock loading on the head, thereby reducing the prevalence of blast-induced traumatic brain injury. A manikin with PCB piezoelectric transducers throughout the head was exposed to low-pressure free-field blasts using an RDX-based explosive charge designed to output a side-on overpressure of 4 pounds per square inch (psi) [27.5 kilopascals (kPa)] with and without a helmet. Orientations of 0, 45, 90, 135, and 180 degrees were evaluated to observe changes in overpressure versus time (<i>p</i>(<i>t</i>)) waveforms. The waveforms were compared to schlieren imagery in which a shock wave impacted 3D-printed silhouettes of a warfighter donning a helmet, showing shock wave flow under the helmet at 0-, 90-, and 180-degree orientations. It was found that trapped shock waves under the helmet create regions of high overpressure and increase the duration of exposure, resulting in higher impulses imparted onto the head. While wearing a helmet, the 90-degree orientation resulted in the greatest reduction in overall peak overpressure, with an 8% decrease compared to the 0-degree orientation. In contrast, the 180-degree orientation led to an increase by 30%. For impulse, the 90-degree orientation showed the greatest reduction, with a decrease of 21%. The 0-degree orientation had the highest overall impulse among all orientations when wearing a helmet.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation into helmet–head shock wave interactions at low overpressures through free-field blasts and schlieren imagery\",\"authors\":\"C. J. H. Thomas,&nbsp;C. E. Johnson\",\"doi\":\"10.1007/s00193-024-01167-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brain injuries in warfighters due to low-level blasts, even while wearing a helmet, are common. Understanding how the form of a shock wave changes when impacting a head donning a helmet may present solutions to reducing shock loading on the head, thereby reducing the prevalence of blast-induced traumatic brain injury. A manikin with PCB piezoelectric transducers throughout the head was exposed to low-pressure free-field blasts using an RDX-based explosive charge designed to output a side-on overpressure of 4 pounds per square inch (psi) [27.5 kilopascals (kPa)] with and without a helmet. Orientations of 0, 45, 90, 135, and 180 degrees were evaluated to observe changes in overpressure versus time (<i>p</i>(<i>t</i>)) waveforms. The waveforms were compared to schlieren imagery in which a shock wave impacted 3D-printed silhouettes of a warfighter donning a helmet, showing shock wave flow under the helmet at 0-, 90-, and 180-degree orientations. It was found that trapped shock waves under the helmet create regions of high overpressure and increase the duration of exposure, resulting in higher impulses imparted onto the head. While wearing a helmet, the 90-degree orientation resulted in the greatest reduction in overall peak overpressure, with an 8% decrease compared to the 0-degree orientation. In contrast, the 180-degree orientation led to an increase by 30%. For impulse, the 90-degree orientation showed the greatest reduction, with a decrease of 21%. The 0-degree orientation had the highest overall impulse among all orientations when wearing a helmet.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-024-01167-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01167-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

即使在佩戴头盔的情况下,低强度爆炸对作战人员造成的脑损伤也很常见。了解冲击波在撞击戴头盔的头部时的形式是如何变化的,可以为减少头部的冲击负荷提供解决方案,从而降低爆炸诱发的脑外伤的发生率。在戴头盔和不戴头盔的情况下,将头部装有 PCB 压电传感器的人体模型暴露在低压自由场爆炸中,爆炸使用的是 RDX 炸药,其设计输出的侧向超压为 4 磅/平方英寸 (psi) [27.5 千帕 (kPa)]。对 0、45、90、135 和 180 度的方向进行了评估,以观察超压与时间 (p(t)) 波形的变化。波形与 Schlieren 图像进行了比较,在 Schlieren 图像中,冲击波冲击戴头盔的 3D 打印战士剪影,显示了 0、90 和 180 度方向上头盔下的冲击波流。研究发现,头盔下的滞留冲击波会产生高过压区域,并增加暴露时间,从而导致头部受到更大的冲击力。戴上头盔后,90 度方向的总体峰值过压降低幅度最大,与 0 度方向相比降低了 8%。相比之下,180 度方向则增加了 30%。在脉冲方面,90 度方向的减幅最大,减少了 21%。在佩戴头盔的所有方向中,0 度方向的总体冲力最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation into helmet–head shock wave interactions at low overpressures through free-field blasts and schlieren imagery

Investigation into helmet–head shock wave interactions at low overpressures through free-field blasts and schlieren imagery

Investigation into helmet–head shock wave interactions at low overpressures through free-field blasts and schlieren imagery

Brain injuries in warfighters due to low-level blasts, even while wearing a helmet, are common. Understanding how the form of a shock wave changes when impacting a head donning a helmet may present solutions to reducing shock loading on the head, thereby reducing the prevalence of blast-induced traumatic brain injury. A manikin with PCB piezoelectric transducers throughout the head was exposed to low-pressure free-field blasts using an RDX-based explosive charge designed to output a side-on overpressure of 4 pounds per square inch (psi) [27.5 kilopascals (kPa)] with and without a helmet. Orientations of 0, 45, 90, 135, and 180 degrees were evaluated to observe changes in overpressure versus time (p(t)) waveforms. The waveforms were compared to schlieren imagery in which a shock wave impacted 3D-printed silhouettes of a warfighter donning a helmet, showing shock wave flow under the helmet at 0-, 90-, and 180-degree orientations. It was found that trapped shock waves under the helmet create regions of high overpressure and increase the duration of exposure, resulting in higher impulses imparted onto the head. While wearing a helmet, the 90-degree orientation resulted in the greatest reduction in overall peak overpressure, with an 8% decrease compared to the 0-degree orientation. In contrast, the 180-degree orientation led to an increase by 30%. For impulse, the 90-degree orientation showed the greatest reduction, with a decrease of 21%. The 0-degree orientation had the highest overall impulse among all orientations when wearing a helmet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信