{"title":"使用自监督认知地图学习器在边缘进行无地图移动机器人导航","authors":"Ioannis Polykretis, Andreea Danielescu","doi":"10.3389/frobt.2024.1372375","DOIUrl":null,"url":null,"abstract":"Navigation of mobile agents in unknown, unmapped environments is a critical task for achieving general autonomy. Recent advancements in combining Reinforcement Learning with Deep Neural Networks have shown promising results in addressing this challenge. However, the inherent complexity of these approaches, characterized by multi-layer networks and intricate reward objectives, limits their autonomy, increases memory footprint, and complicates adaptation to energy-efficient edge hardware. To overcome these challenges, we propose a brain-inspired method that employs a shallow architecture trained by a local learning rule for self-supervised navigation in uncharted environments. Our approach achieves performance comparable to a state-of-the-art Deep Q Network (DQN) method with respect to goal-reaching accuracy and path length, with a similar (slightly lower) number of parameters, operations, and training iterations. Notably, our self-supervised approach combines novelty-based and random walks to alleviate the need for objective reward definition and enhance agent autonomy. At the same time, the shallow architecture and local learning rule do not call for error backpropagation, decreasing the memory overhead and enabling implementation on edge neuromorphic processors. These results contribute to the potential of embodied neuromorphic agents utilizing minimal resources while effectively handling variability.","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapless mobile robot navigation at the edge using self-supervised cognitive map learners\",\"authors\":\"Ioannis Polykretis, Andreea Danielescu\",\"doi\":\"10.3389/frobt.2024.1372375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigation of mobile agents in unknown, unmapped environments is a critical task for achieving general autonomy. Recent advancements in combining Reinforcement Learning with Deep Neural Networks have shown promising results in addressing this challenge. However, the inherent complexity of these approaches, characterized by multi-layer networks and intricate reward objectives, limits their autonomy, increases memory footprint, and complicates adaptation to energy-efficient edge hardware. To overcome these challenges, we propose a brain-inspired method that employs a shallow architecture trained by a local learning rule for self-supervised navigation in uncharted environments. Our approach achieves performance comparable to a state-of-the-art Deep Q Network (DQN) method with respect to goal-reaching accuracy and path length, with a similar (slightly lower) number of parameters, operations, and training iterations. Notably, our self-supervised approach combines novelty-based and random walks to alleviate the need for objective reward definition and enhance agent autonomy. At the same time, the shallow architecture and local learning rule do not call for error backpropagation, decreasing the memory overhead and enabling implementation on edge neuromorphic processors. These results contribute to the potential of embodied neuromorphic agents utilizing minimal resources while effectively handling variability.\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1372375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1372375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Mapless mobile robot navigation at the edge using self-supervised cognitive map learners
Navigation of mobile agents in unknown, unmapped environments is a critical task for achieving general autonomy. Recent advancements in combining Reinforcement Learning with Deep Neural Networks have shown promising results in addressing this challenge. However, the inherent complexity of these approaches, characterized by multi-layer networks and intricate reward objectives, limits their autonomy, increases memory footprint, and complicates adaptation to energy-efficient edge hardware. To overcome these challenges, we propose a brain-inspired method that employs a shallow architecture trained by a local learning rule for self-supervised navigation in uncharted environments. Our approach achieves performance comparable to a state-of-the-art Deep Q Network (DQN) method with respect to goal-reaching accuracy and path length, with a similar (slightly lower) number of parameters, operations, and training iterations. Notably, our self-supervised approach combines novelty-based and random walks to alleviate the need for objective reward definition and enhance agent autonomy. At the same time, the shallow architecture and local learning rule do not call for error backpropagation, decreasing the memory overhead and enabling implementation on edge neuromorphic processors. These results contribute to the potential of embodied neuromorphic agents utilizing minimal resources while effectively handling variability.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.