{"title":"铜-肼复合物的形成对磁铁矿、镍铁矿和铬铁矿 HyBRID 净化反应的影响","authors":"Young-Kyu Han, Jihun Oh, Changhyun Roh","doi":"10.1007/s42823-024-00744-y","DOIUrl":null,"url":null,"abstract":"<div><p>Various transition metal oxides are deposited on the surface of materials such as stainless steel, which is used in the coolant systems of nuclear power plants. The task of removing harmful radionuclides can be solved through the dissolution reaction of the deposited corrosion oxide layer. In this study, for the first time, the reaction thermodynamics of the hydrazine-based reductive metal ion decontamination (HyBRID) reaction developed by the Korea Atomic Energy Research Institute were studied considering the formation of a strong ion − ligand chemical bond complex between Cu ions and hydrazine. When considering complex formation, we found that it had a significant impact on the thermodynamic decontamination reactions of magnetite, nickel ferrite, and chromite. The reactions were proven to be much more thermodynamically favorable than the reaction energies reported thus far, which did not consider complex formation. We demonstrated that not only the thermodynamic energy but also the structures of the HyBRID reaction products can be significantly changed, depending on complex formation considerations.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 8","pages":"2091 - 2098"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Cu − hydrazine complex formation on HyBRID decontamination reactions for magnetite, nickel ferrite, and chromite\",\"authors\":\"Young-Kyu Han, Jihun Oh, Changhyun Roh\",\"doi\":\"10.1007/s42823-024-00744-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various transition metal oxides are deposited on the surface of materials such as stainless steel, which is used in the coolant systems of nuclear power plants. The task of removing harmful radionuclides can be solved through the dissolution reaction of the deposited corrosion oxide layer. In this study, for the first time, the reaction thermodynamics of the hydrazine-based reductive metal ion decontamination (HyBRID) reaction developed by the Korea Atomic Energy Research Institute were studied considering the formation of a strong ion − ligand chemical bond complex between Cu ions and hydrazine. When considering complex formation, we found that it had a significant impact on the thermodynamic decontamination reactions of magnetite, nickel ferrite, and chromite. The reactions were proven to be much more thermodynamically favorable than the reaction energies reported thus far, which did not consider complex formation. We demonstrated that not only the thermodynamic energy but also the structures of the HyBRID reaction products can be significantly changed, depending on complex formation considerations.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"34 8\",\"pages\":\"2091 - 2098\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00744-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00744-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Cu − hydrazine complex formation on HyBRID decontamination reactions for magnetite, nickel ferrite, and chromite
Various transition metal oxides are deposited on the surface of materials such as stainless steel, which is used in the coolant systems of nuclear power plants. The task of removing harmful radionuclides can be solved through the dissolution reaction of the deposited corrosion oxide layer. In this study, for the first time, the reaction thermodynamics of the hydrazine-based reductive metal ion decontamination (HyBRID) reaction developed by the Korea Atomic Energy Research Institute were studied considering the formation of a strong ion − ligand chemical bond complex between Cu ions and hydrazine. When considering complex formation, we found that it had a significant impact on the thermodynamic decontamination reactions of magnetite, nickel ferrite, and chromite. The reactions were proven to be much more thermodynamically favorable than the reaction energies reported thus far, which did not consider complex formation. We demonstrated that not only the thermodynamic energy but also the structures of the HyBRID reaction products can be significantly changed, depending on complex formation considerations.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.