提高垂直横向各向同性介质中行进时间计算精度的最短路径辅助快速扫描方法

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Jianming Zhang, Liangguo Dong, Chao Huang
{"title":"提高垂直横向各向同性介质中行进时间计算精度的最短路径辅助快速扫描方法","authors":"Jianming Zhang,&nbsp;Liangguo Dong,&nbsp;Chao Huang","doi":"10.1111/1365-2478.13537","DOIUrl":null,"url":null,"abstract":"<p>The high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast-sweeping method is an efficient upwind finite-difference approach for solving the eikonal equation. However, the fast-sweeping method is accurate only along the axis directions. In two-dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast-sweeping method and anisotropic fast-sweeping method. To improve the accuracy of traveltime calculation in two-dimensional or higher dimensional space, a shortest-path-aided fast-sweeping method is proposed. The shortest-path-aided solution is embedded into the sweeping process of the standard fast-sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest-path-aided fast-sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two-dimensional to higher dimensional, from low-order to higher-order and from isotropic to anisotropic cases.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 7","pages":"2761-2771"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A shortest-path-aided fast-sweeping method to improve the accuracy of traveltime calculation in vertically transverse isotropic media\",\"authors\":\"Jianming Zhang,&nbsp;Liangguo Dong,&nbsp;Chao Huang\",\"doi\":\"10.1111/1365-2478.13537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast-sweeping method is an efficient upwind finite-difference approach for solving the eikonal equation. However, the fast-sweeping method is accurate only along the axis directions. In two-dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast-sweeping method and anisotropic fast-sweeping method. To improve the accuracy of traveltime calculation in two-dimensional or higher dimensional space, a shortest-path-aided fast-sweeping method is proposed. The shortest-path-aided solution is embedded into the sweeping process of the standard fast-sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest-path-aided fast-sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two-dimensional to higher dimensional, from low-order to higher-order and from isotropic to anisotropic cases.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"72 7\",\"pages\":\"2761-2771\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13537\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13537","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

高精度和高效率的旅行时间计算对于地震层析成像、迁移、静校正、震源定位和各向异性参数估计至关重要。快速扫描法是一种高效的上风有限差分法,用于求解 eikonal 方程。然而,快速扫频法仅沿轴线方向精确。在二维或更高维的情况下,由于对角线方向上的数值误差,精度会严重下降。这些类似的数值误差也出现在高阶快速扫描方法和各向异性快速扫描方法中。为了提高二维或更高维空间的旅行时间计算精度,提出了一种最短路径辅助快速扫描方法。最短路径辅助解被嵌入到标准快速扫描方法的扫描过程中,以提高对角线方向的旅行时间精度。最短路径辅助快速扫描方法非常容易实现,几乎不需要额外的计算成本和内存消耗。此外,这种方法很容易从二维扩展到高维,从低阶扩展到高阶,从各向同性扩展到各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A shortest-path-aided fast-sweeping method to improve the accuracy of traveltime calculation in vertically transverse isotropic media

The high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast-sweeping method is an efficient upwind finite-difference approach for solving the eikonal equation. However, the fast-sweeping method is accurate only along the axis directions. In two-dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast-sweeping method and anisotropic fast-sweeping method. To improve the accuracy of traveltime calculation in two-dimensional or higher dimensional space, a shortest-path-aided fast-sweeping method is proposed. The shortest-path-aided solution is embedded into the sweeping process of the standard fast-sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest-path-aided fast-sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two-dimensional to higher dimensional, from low-order to higher-order and from isotropic to anisotropic cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信