{"title":"提高垂直横向各向同性介质中行进时间计算精度的最短路径辅助快速扫描方法","authors":"Jianming Zhang, Liangguo Dong, Chao Huang","doi":"10.1111/1365-2478.13537","DOIUrl":null,"url":null,"abstract":"<p>The high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast-sweeping method is an efficient upwind finite-difference approach for solving the eikonal equation. However, the fast-sweeping method is accurate only along the axis directions. In two-dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast-sweeping method and anisotropic fast-sweeping method. To improve the accuracy of traveltime calculation in two-dimensional or higher dimensional space, a shortest-path-aided fast-sweeping method is proposed. The shortest-path-aided solution is embedded into the sweeping process of the standard fast-sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest-path-aided fast-sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two-dimensional to higher dimensional, from low-order to higher-order and from isotropic to anisotropic cases.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 7","pages":"2761-2771"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A shortest-path-aided fast-sweeping method to improve the accuracy of traveltime calculation in vertically transverse isotropic media\",\"authors\":\"Jianming Zhang, Liangguo Dong, Chao Huang\",\"doi\":\"10.1111/1365-2478.13537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast-sweeping method is an efficient upwind finite-difference approach for solving the eikonal equation. However, the fast-sweeping method is accurate only along the axis directions. In two-dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast-sweeping method and anisotropic fast-sweeping method. To improve the accuracy of traveltime calculation in two-dimensional or higher dimensional space, a shortest-path-aided fast-sweeping method is proposed. The shortest-path-aided solution is embedded into the sweeping process of the standard fast-sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest-path-aided fast-sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two-dimensional to higher dimensional, from low-order to higher-order and from isotropic to anisotropic cases.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"72 7\",\"pages\":\"2761-2771\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13537\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13537","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A shortest-path-aided fast-sweeping method to improve the accuracy of traveltime calculation in vertically transverse isotropic media
The high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast-sweeping method is an efficient upwind finite-difference approach for solving the eikonal equation. However, the fast-sweeping method is accurate only along the axis directions. In two-dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast-sweeping method and anisotropic fast-sweeping method. To improve the accuracy of traveltime calculation in two-dimensional or higher dimensional space, a shortest-path-aided fast-sweeping method is proposed. The shortest-path-aided solution is embedded into the sweeping process of the standard fast-sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest-path-aided fast-sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two-dimensional to higher dimensional, from low-order to higher-order and from isotropic to anisotropic cases.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.