Julian Kindel, Daniel Andreas, Zhongshi Hou, Anany Dwivedi, Philipp Beckerle
{"title":"可穿戴双向人机界面:在无线手镯中融合运动捕捉和振动反馈功能","authors":"Julian Kindel, Daniel Andreas, Zhongshi Hou, Anany Dwivedi, Philipp Beckerle","doi":"10.3390/mti8060044","DOIUrl":null,"url":null,"abstract":"Humans interact with the environment through a variety of senses. Touch in particular contributes to a sense of presence, enhancing perceptual experiences, and establishing causal relations between events. Many human–machine interfaces only allow for one-way communication, which does not do justice to the complexity of the interaction. To address this, we developed a bidirectional human–machine interface featuring a bracelet equipped with linear resonant actuators, controlled via a Robot Operating System (ROS) program, to simulate haptic feedback. Further, the wireless interface includes a motion sensor and a sensor to quantify the tightness of the bracelet. Our functional experiments, which compared stimulation with three and five intensity levels, respectively, were performed by four healthy participants in their twenties and thirties. The participants achieved an average accuracy of 88% estimating three vibration intensity levels. While the estimation accuracy for five intensity levels was only 67%, the results indicated a good performance in perceiving relative vibration changes with an accuracy of 82%. The proposed haptic feedback bracelet will facilitate research investigating the benefits of bidirectional human–machine interfaces and the perception of vibrotactile feedback in general by closing the gap for a versatile device that can provide high-density user feedback in combination with sensors for intent detection.","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wearable Bidirectional Human–Machine Interface: Merging Motion Capture and Vibrotactile Feedback in a Wireless Bracelet\",\"authors\":\"Julian Kindel, Daniel Andreas, Zhongshi Hou, Anany Dwivedi, Philipp Beckerle\",\"doi\":\"10.3390/mti8060044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans interact with the environment through a variety of senses. Touch in particular contributes to a sense of presence, enhancing perceptual experiences, and establishing causal relations between events. Many human–machine interfaces only allow for one-way communication, which does not do justice to the complexity of the interaction. To address this, we developed a bidirectional human–machine interface featuring a bracelet equipped with linear resonant actuators, controlled via a Robot Operating System (ROS) program, to simulate haptic feedback. Further, the wireless interface includes a motion sensor and a sensor to quantify the tightness of the bracelet. Our functional experiments, which compared stimulation with three and five intensity levels, respectively, were performed by four healthy participants in their twenties and thirties. The participants achieved an average accuracy of 88% estimating three vibration intensity levels. While the estimation accuracy for five intensity levels was only 67%, the results indicated a good performance in perceiving relative vibration changes with an accuracy of 82%. The proposed haptic feedback bracelet will facilitate research investigating the benefits of bidirectional human–machine interfaces and the perception of vibrotactile feedback in general by closing the gap for a versatile device that can provide high-density user feedback in combination with sensors for intent detection.\",\"PeriodicalId\":52297,\"journal\":{\"name\":\"Multimodal Technologies and Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technologies and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti8060044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti8060044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Wearable Bidirectional Human–Machine Interface: Merging Motion Capture and Vibrotactile Feedback in a Wireless Bracelet
Humans interact with the environment through a variety of senses. Touch in particular contributes to a sense of presence, enhancing perceptual experiences, and establishing causal relations between events. Many human–machine interfaces only allow for one-way communication, which does not do justice to the complexity of the interaction. To address this, we developed a bidirectional human–machine interface featuring a bracelet equipped with linear resonant actuators, controlled via a Robot Operating System (ROS) program, to simulate haptic feedback. Further, the wireless interface includes a motion sensor and a sensor to quantify the tightness of the bracelet. Our functional experiments, which compared stimulation with three and five intensity levels, respectively, were performed by four healthy participants in their twenties and thirties. The participants achieved an average accuracy of 88% estimating three vibration intensity levels. While the estimation accuracy for five intensity levels was only 67%, the results indicated a good performance in perceiving relative vibration changes with an accuracy of 82%. The proposed haptic feedback bracelet will facilitate research investigating the benefits of bidirectional human–machine interfaces and the perception of vibrotactile feedback in general by closing the gap for a versatile device that can provide high-density user feedback in combination with sensors for intent detection.