{"title":"用于静态分析轴齿轮系统的闭式方程","authors":"Mahmoud-Reza Hosseini-Tabatabaei, Mahmoud Alfouneh","doi":"10.1007/s11012-024-01803-4","DOIUrl":null,"url":null,"abstract":"<div><p>Shaft-gear systems are integral parts of industry. To analyze these systems using an existing classical method, one should first write the static equilibrium and compatibility equations and then solve these equations simultaneously, which is tedious for complex problems. This study proposes a novel method for analyzing shaft-gear systems. The systems are modeled as parallel or series arrangements using torsional springs. By introducing a concept of torque propagation, relationships of the stiffness/flexibility, torque, and twist angle are derived, resulting in closed-form equations with the unknown torques or the twist angles that can be directly found without concurrently solving the static equilibrium and compatibility equations. Illustrative examples are presented to validate and address the efficiency of the proposed method to quickly analyze the shaft-gear systems, even for a combination of parallel and series ones. The results are exact and portend that the technique requires cost-efficiency of computations compared to the existing method, especially when the systems are hybrid, or the number of unknowns is high. Also, a concise computer program can be provided by the proposed equations.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 6","pages":"921 - 938"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-form equations for statically analyzing shaft-gear systems\",\"authors\":\"Mahmoud-Reza Hosseini-Tabatabaei, Mahmoud Alfouneh\",\"doi\":\"10.1007/s11012-024-01803-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shaft-gear systems are integral parts of industry. To analyze these systems using an existing classical method, one should first write the static equilibrium and compatibility equations and then solve these equations simultaneously, which is tedious for complex problems. This study proposes a novel method for analyzing shaft-gear systems. The systems are modeled as parallel or series arrangements using torsional springs. By introducing a concept of torque propagation, relationships of the stiffness/flexibility, torque, and twist angle are derived, resulting in closed-form equations with the unknown torques or the twist angles that can be directly found without concurrently solving the static equilibrium and compatibility equations. Illustrative examples are presented to validate and address the efficiency of the proposed method to quickly analyze the shaft-gear systems, even for a combination of parallel and series ones. The results are exact and portend that the technique requires cost-efficiency of computations compared to the existing method, especially when the systems are hybrid, or the number of unknowns is high. Also, a concise computer program can be provided by the proposed equations.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 6\",\"pages\":\"921 - 938\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01803-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01803-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Closed-form equations for statically analyzing shaft-gear systems
Shaft-gear systems are integral parts of industry. To analyze these systems using an existing classical method, one should first write the static equilibrium and compatibility equations and then solve these equations simultaneously, which is tedious for complex problems. This study proposes a novel method for analyzing shaft-gear systems. The systems are modeled as parallel or series arrangements using torsional springs. By introducing a concept of torque propagation, relationships of the stiffness/flexibility, torque, and twist angle are derived, resulting in closed-form equations with the unknown torques or the twist angles that can be directly found without concurrently solving the static equilibrium and compatibility equations. Illustrative examples are presented to validate and address the efficiency of the proposed method to quickly analyze the shaft-gear systems, even for a combination of parallel and series ones. The results are exact and portend that the technique requires cost-efficiency of computations compared to the existing method, especially when the systems are hybrid, or the number of unknowns is high. Also, a concise computer program can be provided by the proposed equations.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.