{"title":"利用航空飞行器进行自主全三维覆盖,为物流领域的室内清点工作提供定位、路径规划和导航功能","authors":"Kosmas Tsiakas, E. Tsardoulias, A. Symeonidis","doi":"10.3390/robotics13060083","DOIUrl":null,"url":null,"abstract":"Over the last years, a rapid evolution of unmanned aerial vehicle (UAV) usage in various applications has been observed. Their use in indoor environments requires a precise perception of the surrounding area, immediate response to its changes, and, consequently, a robust position estimation. This paper provides an implementation of navigation algorithms for solving the problem of fast, reliable, and low-cost inventorying in the logistics industry. The drone localization is achieved with a particle filter algorithm that uses an array of distance sensors and an inertial measurement unit (IMU) sensor. Navigation is based on a proportional–integral–derivative (PID) position controller that ensures an obstacle-free path within the known 3D map. As for the full 3D coverage, an extraction of the targets and then their final succession towards optimal coverage is performed. Finally, a series of experiments are carried out to examine the robustness of the positioning system using different motion patterns and velocities. At the same time, various ways of traversing the environment are examined by using different configurations of the sensor that is used to perform the area coverage.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"49 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Full 3D Coverage Using an Aerial Vehicle, Performing Localization, Path Planning, and Navigation Towards Indoors Inventorying for the Logistics Domain\",\"authors\":\"Kosmas Tsiakas, E. Tsardoulias, A. Symeonidis\",\"doi\":\"10.3390/robotics13060083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last years, a rapid evolution of unmanned aerial vehicle (UAV) usage in various applications has been observed. Their use in indoor environments requires a precise perception of the surrounding area, immediate response to its changes, and, consequently, a robust position estimation. This paper provides an implementation of navigation algorithms for solving the problem of fast, reliable, and low-cost inventorying in the logistics industry. The drone localization is achieved with a particle filter algorithm that uses an array of distance sensors and an inertial measurement unit (IMU) sensor. Navigation is based on a proportional–integral–derivative (PID) position controller that ensures an obstacle-free path within the known 3D map. As for the full 3D coverage, an extraction of the targets and then their final succession towards optimal coverage is performed. Finally, a series of experiments are carried out to examine the robustness of the positioning system using different motion patterns and velocities. At the same time, various ways of traversing the environment are examined by using different configurations of the sensor that is used to perform the area coverage.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"49 20\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics13060083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13060083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Autonomous Full 3D Coverage Using an Aerial Vehicle, Performing Localization, Path Planning, and Navigation Towards Indoors Inventorying for the Logistics Domain
Over the last years, a rapid evolution of unmanned aerial vehicle (UAV) usage in various applications has been observed. Their use in indoor environments requires a precise perception of the surrounding area, immediate response to its changes, and, consequently, a robust position estimation. This paper provides an implementation of navigation algorithms for solving the problem of fast, reliable, and low-cost inventorying in the logistics industry. The drone localization is achieved with a particle filter algorithm that uses an array of distance sensors and an inertial measurement unit (IMU) sensor. Navigation is based on a proportional–integral–derivative (PID) position controller that ensures an obstacle-free path within the known 3D map. As for the full 3D coverage, an extraction of the targets and then their final succession towards optimal coverage is performed. Finally, a series of experiments are carried out to examine the robustness of the positioning system using different motion patterns and velocities. At the same time, various ways of traversing the environment are examined by using different configurations of the sensor that is used to perform the area coverage.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.