Aleksandar Marinković, Blaža Stojanović, Carsten Gachot, Tatjana Lazović
{"title":"多孔滑动轴承的润滑机制分析","authors":"Aleksandar Marinković, Blaža Stojanović, Carsten Gachot, Tatjana Lazović","doi":"10.3390/lubricants12060184","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to analyze the lubrication quality of porous sliding bearings, starting from the bearing model and in combination with experimental results aimed at analyzing the lubrication regimes of different working conditions. The separation between the surfaces by the lubricant layer is what determines the regime. The quality and type of lubrication regime are determined by parameters in the mathematical model including typically speed, load, motion, materials, environment, etc., which have an impact on friction. Besides those elements, important parameters such as coefficient of friction (COF) and working temperature are to be measured due to experimental investigations to detect an equilibrium working state. The self-lubrication mechanism in porous metal bearings improves their service life and lubrication processes; however, the COF still varies within a wide interval. This variability can be understood, considering that during bearing operation it operates within a broad range of lubrication regimes. Those findings are explained in the paper by using a combination of calculated parameters according to the bearing model and in combination with our own results of experimental investigations. With the obtained results for particular working conditions, the authors are trying to explain, in the form of a diagram with the limit line as an important outcome of the work, that the lubrication regime for porous metal bearings could arise from boundary lubrication (BL) close to hydrodynamic lubrication (HDL).","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Lubrication Regimes for Porous Sliding Bearing\",\"authors\":\"Aleksandar Marinković, Blaža Stojanović, Carsten Gachot, Tatjana Lazović\",\"doi\":\"10.3390/lubricants12060184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to analyze the lubrication quality of porous sliding bearings, starting from the bearing model and in combination with experimental results aimed at analyzing the lubrication regimes of different working conditions. The separation between the surfaces by the lubricant layer is what determines the regime. The quality and type of lubrication regime are determined by parameters in the mathematical model including typically speed, load, motion, materials, environment, etc., which have an impact on friction. Besides those elements, important parameters such as coefficient of friction (COF) and working temperature are to be measured due to experimental investigations to detect an equilibrium working state. The self-lubrication mechanism in porous metal bearings improves their service life and lubrication processes; however, the COF still varies within a wide interval. This variability can be understood, considering that during bearing operation it operates within a broad range of lubrication regimes. Those findings are explained in the paper by using a combination of calculated parameters according to the bearing model and in combination with our own results of experimental investigations. With the obtained results for particular working conditions, the authors are trying to explain, in the form of a diagram with the limit line as an important outcome of the work, that the lubrication regime for porous metal bearings could arise from boundary lubrication (BL) close to hydrodynamic lubrication (HDL).\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12060184\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12060184","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Analysis of Lubrication Regimes for Porous Sliding Bearing
The purpose of this paper is to analyze the lubrication quality of porous sliding bearings, starting from the bearing model and in combination with experimental results aimed at analyzing the lubrication regimes of different working conditions. The separation between the surfaces by the lubricant layer is what determines the regime. The quality and type of lubrication regime are determined by parameters in the mathematical model including typically speed, load, motion, materials, environment, etc., which have an impact on friction. Besides those elements, important parameters such as coefficient of friction (COF) and working temperature are to be measured due to experimental investigations to detect an equilibrium working state. The self-lubrication mechanism in porous metal bearings improves their service life and lubrication processes; however, the COF still varies within a wide interval. This variability can be understood, considering that during bearing operation it operates within a broad range of lubrication regimes. Those findings are explained in the paper by using a combination of calculated parameters according to the bearing model and in combination with our own results of experimental investigations. With the obtained results for particular working conditions, the authors are trying to explain, in the form of a diagram with the limit line as an important outcome of the work, that the lubrication regime for porous metal bearings could arise from boundary lubrication (BL) close to hydrodynamic lubrication (HDL).
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding