{"title":"测试和评估金属振动吸收器疲劳寿命的新方法","authors":"Y. Peng, D. Jia, Z. Chen, Y. Gao, W. Zhong","doi":"10.1007/s40799-024-00721-0","DOIUrl":null,"url":null,"abstract":"<div><p>Metal vibration absorber has been widely used to reduce the structural vibration under various complex environmental conditions, the fatigue reliability of which has an important influence on the safety of the structure. In this paper, a novel fatigue failure criterion when the residual preload displacement of metal vibration absorber is equal to the fatigue displacement amplitude is proposed to determine the fatigue life of metal vibration absorber. And a set of fatigue failure life prediction method is developed to obtain the failure life of non-failed metal vibration absorber. The predicted load versus life (<i>P</i>-<i>N</i>) curve of the metal vibration absorber under different load levels shows a good power function relation. Based on the fatigue displacement amplitude-life curves and the residual preload displacement-life curves of the metal vibration absorbers, a fatigue failure assessment diagram is successfully established. Further, the residual fatigue failure life of in-service metal vibration absorber can also be predicted according to the failure assessment diagram. By means of the scanning electron microscopy and the three-dimensional tomography equipment, the microanalyses of metal wire components after fatigue tests are conducted, and the fatigue wear and fracture law of metal wire in the metal vibration absorber is mastered.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"49 1","pages":"45 - 57"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Testing and Evaluating the Fatigue Life of Metal Vibration Absorber\",\"authors\":\"Y. Peng, D. Jia, Z. Chen, Y. Gao, W. Zhong\",\"doi\":\"10.1007/s40799-024-00721-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal vibration absorber has been widely used to reduce the structural vibration under various complex environmental conditions, the fatigue reliability of which has an important influence on the safety of the structure. In this paper, a novel fatigue failure criterion when the residual preload displacement of metal vibration absorber is equal to the fatigue displacement amplitude is proposed to determine the fatigue life of metal vibration absorber. And a set of fatigue failure life prediction method is developed to obtain the failure life of non-failed metal vibration absorber. The predicted load versus life (<i>P</i>-<i>N</i>) curve of the metal vibration absorber under different load levels shows a good power function relation. Based on the fatigue displacement amplitude-life curves and the residual preload displacement-life curves of the metal vibration absorbers, a fatigue failure assessment diagram is successfully established. Further, the residual fatigue failure life of in-service metal vibration absorber can also be predicted according to the failure assessment diagram. By means of the scanning electron microscopy and the three-dimensional tomography equipment, the microanalyses of metal wire components after fatigue tests are conducted, and the fatigue wear and fracture law of metal wire in the metal vibration absorber is mastered.</p></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"49 1\",\"pages\":\"45 - 57\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-024-00721-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-024-00721-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Novel Method for Testing and Evaluating the Fatigue Life of Metal Vibration Absorber
Metal vibration absorber has been widely used to reduce the structural vibration under various complex environmental conditions, the fatigue reliability of which has an important influence on the safety of the structure. In this paper, a novel fatigue failure criterion when the residual preload displacement of metal vibration absorber is equal to the fatigue displacement amplitude is proposed to determine the fatigue life of metal vibration absorber. And a set of fatigue failure life prediction method is developed to obtain the failure life of non-failed metal vibration absorber. The predicted load versus life (P-N) curve of the metal vibration absorber under different load levels shows a good power function relation. Based on the fatigue displacement amplitude-life curves and the residual preload displacement-life curves of the metal vibration absorbers, a fatigue failure assessment diagram is successfully established. Further, the residual fatigue failure life of in-service metal vibration absorber can also be predicted according to the failure assessment diagram. By means of the scanning electron microscopy and the three-dimensional tomography equipment, the microanalyses of metal wire components after fatigue tests are conducted, and the fatigue wear and fracture law of metal wire in the metal vibration absorber is mastered.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.