{"title":"使用单个有源元件的电子可调谐接地和浮动电容倍增器","authors":"Nuttapon Seechaiya, Winai Jaikla, Amornchai Chaichana, Phamorn Silapan, Piya Supavarasuwat, Peerawut Suwanjan","doi":"10.1155/2024/6628863","DOIUrl":null,"url":null,"abstract":"A capacitance multiplier is an active circuit designed specifically to increase the capacitance of a passive capacitor to a significantly higher capacitance level. In this paper, the use of a voltage differencing differential difference amplifier (VDDDA), an electronically controllable active device for designing grounded and floating capacitance multipliers, is proposed. The capacitance multipliers proposed in this study are extremely simple and consist of a VDDDA, a resistor, and a capacitor. The multiplication factor (Kc) can be electronically controlled by adjusting the external bias current (IB). It offers an easy way of controlling it by utilizing a microcontroller for modern analog signal processing systems. The multiplication factor has the potential to be adjusted to a value that is either less than or greater than one, hence widening the variety of uses. The grounded capacitance multiplier can be easily transformed into a floating one by utilizing Zc-VDDDA. PSpice simulation and experimentation with a VDDDA realized from commercially available integrated circuits were used to test the performance of the proposed capacitance multipliers. The multiplication factor is electronically adjustable, ranging in approximation from 0.56 to 13.94. The operating frequency range is approximately three frequency decades. The realization of the lagging and leading phase shifters using the proposed capacitance multiplier is also examined and proven. The results reveal that the lagging and leading phase shifts are electronically tuned via the multiplication factor of the proposed capacitance multipliers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"27 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element\",\"authors\":\"Nuttapon Seechaiya, Winai Jaikla, Amornchai Chaichana, Phamorn Silapan, Piya Supavarasuwat, Peerawut Suwanjan\",\"doi\":\"10.1155/2024/6628863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A capacitance multiplier is an active circuit designed specifically to increase the capacitance of a passive capacitor to a significantly higher capacitance level. In this paper, the use of a voltage differencing differential difference amplifier (VDDDA), an electronically controllable active device for designing grounded and floating capacitance multipliers, is proposed. The capacitance multipliers proposed in this study are extremely simple and consist of a VDDDA, a resistor, and a capacitor. The multiplication factor (Kc) can be electronically controlled by adjusting the external bias current (IB). It offers an easy way of controlling it by utilizing a microcontroller for modern analog signal processing systems. The multiplication factor has the potential to be adjusted to a value that is either less than or greater than one, hence widening the variety of uses. The grounded capacitance multiplier can be easily transformed into a floating one by utilizing Zc-VDDDA. PSpice simulation and experimentation with a VDDDA realized from commercially available integrated circuits were used to test the performance of the proposed capacitance multipliers. The multiplication factor is electronically adjustable, ranging in approximation from 0.56 to 13.94. The operating frequency range is approximately three frequency decades. The realization of the lagging and leading phase shifters using the proposed capacitance multiplier is also examined and proven. The results reveal that the lagging and leading phase shifts are electronically tuned via the multiplication factor of the proposed capacitance multipliers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6628863\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6628863","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element
A capacitance multiplier is an active circuit designed specifically to increase the capacitance of a passive capacitor to a significantly higher capacitance level. In this paper, the use of a voltage differencing differential difference amplifier (VDDDA), an electronically controllable active device for designing grounded and floating capacitance multipliers, is proposed. The capacitance multipliers proposed in this study are extremely simple and consist of a VDDDA, a resistor, and a capacitor. The multiplication factor (Kc) can be electronically controlled by adjusting the external bias current (IB). It offers an easy way of controlling it by utilizing a microcontroller for modern analog signal processing systems. The multiplication factor has the potential to be adjusted to a value that is either less than or greater than one, hence widening the variety of uses. The grounded capacitance multiplier can be easily transformed into a floating one by utilizing Zc-VDDDA. PSpice simulation and experimentation with a VDDDA realized from commercially available integrated circuits were used to test the performance of the proposed capacitance multipliers. The multiplication factor is electronically adjustable, ranging in approximation from 0.56 to 13.94. The operating frequency range is approximately three frequency decades. The realization of the lagging and leading phase shifters using the proposed capacitance multiplier is also examined and proven. The results reveal that the lagging and leading phase shifts are electronically tuned via the multiplication factor of the proposed capacitance multipliers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.