{"title":"基于圆板和圆柱体模型的岩石振动特性研究:尺寸、几何形状和边界条件","authors":"Zhao Zhang, Bing Liu, Jianlin Liu","doi":"10.1093/jom/ufae021","DOIUrl":null,"url":null,"abstract":"\n The declaration on the “natural frequency of rock” exists in many engineering areas, and it has caused many misunderstandings. Different from the mass-spring model usually used, the circular plate model and cylinder model are respectively established to clarify the relationship between the vibration characteristics (including natural frequency and vibration mode) and their influencing factors of rock by modal analysis. The effect of dimension, geometric shape, and boundary condition on the vibration characteristics of rock with plate structure is investigated, in which the semi-analytical solutions agree well with the simulation results. By using the cylinder model based upon the Lamé-Navier Eq., the effect of such influencing factors on the vibration characteristics of the block rock sample is further studied and verified by numerical simulation and experimental results. The results suggest that the natural frequency of “rock” (including the experimental rock sample) is strongly dependent on the dimension, geometric shape, and boundary condition. The resonance frequency observed in the excitation experiment is not only closely associated with the natural frequency of a specific order, but also dependent on the dominance of the particular vibration mode. These findings contribute to a better understanding of the rock-breaking mechanism under dynamic loads with a certain excitation frequency.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"49 19","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on vibration characteristics of rock based on circular plate and cylinder model: dimension, geometric shape and boundary condition\",\"authors\":\"Zhao Zhang, Bing Liu, Jianlin Liu\",\"doi\":\"10.1093/jom/ufae021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The declaration on the “natural frequency of rock” exists in many engineering areas, and it has caused many misunderstandings. Different from the mass-spring model usually used, the circular plate model and cylinder model are respectively established to clarify the relationship between the vibration characteristics (including natural frequency and vibration mode) and their influencing factors of rock by modal analysis. The effect of dimension, geometric shape, and boundary condition on the vibration characteristics of rock with plate structure is investigated, in which the semi-analytical solutions agree well with the simulation results. By using the cylinder model based upon the Lamé-Navier Eq., the effect of such influencing factors on the vibration characteristics of the block rock sample is further studied and verified by numerical simulation and experimental results. The results suggest that the natural frequency of “rock” (including the experimental rock sample) is strongly dependent on the dimension, geometric shape, and boundary condition. The resonance frequency observed in the excitation experiment is not only closely associated with the natural frequency of a specific order, but also dependent on the dominance of the particular vibration mode. These findings contribute to a better understanding of the rock-breaking mechanism under dynamic loads with a certain excitation frequency.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"49 19\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufae021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufae021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation on vibration characteristics of rock based on circular plate and cylinder model: dimension, geometric shape and boundary condition
The declaration on the “natural frequency of rock” exists in many engineering areas, and it has caused many misunderstandings. Different from the mass-spring model usually used, the circular plate model and cylinder model are respectively established to clarify the relationship between the vibration characteristics (including natural frequency and vibration mode) and their influencing factors of rock by modal analysis. The effect of dimension, geometric shape, and boundary condition on the vibration characteristics of rock with plate structure is investigated, in which the semi-analytical solutions agree well with the simulation results. By using the cylinder model based upon the Lamé-Navier Eq., the effect of such influencing factors on the vibration characteristics of the block rock sample is further studied and verified by numerical simulation and experimental results. The results suggest that the natural frequency of “rock” (including the experimental rock sample) is strongly dependent on the dimension, geometric shape, and boundary condition. The resonance frequency observed in the excitation experiment is not only closely associated with the natural frequency of a specific order, but also dependent on the dominance of the particular vibration mode. These findings contribute to a better understanding of the rock-breaking mechanism under dynamic loads with a certain excitation frequency.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.