基于圆板和圆柱体模型的岩石振动特性研究:尺寸、几何形状和边界条件

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhao Zhang, Bing Liu, Jianlin Liu
{"title":"基于圆板和圆柱体模型的岩石振动特性研究:尺寸、几何形状和边界条件","authors":"Zhao Zhang, Bing Liu, Jianlin Liu","doi":"10.1093/jom/ufae021","DOIUrl":null,"url":null,"abstract":"\n The declaration on the “natural frequency of rock” exists in many engineering areas, and it has caused many misunderstandings. Different from the mass-spring model usually used, the circular plate model and cylinder model are respectively established to clarify the relationship between the vibration characteristics (including natural frequency and vibration mode) and their influencing factors of rock by modal analysis. The effect of dimension, geometric shape, and boundary condition on the vibration characteristics of rock with plate structure is investigated, in which the semi-analytical solutions agree well with the simulation results. By using the cylinder model based upon the Lamé-Navier Eq., the effect of such influencing factors on the vibration characteristics of the block rock sample is further studied and verified by numerical simulation and experimental results. The results suggest that the natural frequency of “rock” (including the experimental rock sample) is strongly dependent on the dimension, geometric shape, and boundary condition. The resonance frequency observed in the excitation experiment is not only closely associated with the natural frequency of a specific order, but also dependent on the dominance of the particular vibration mode. These findings contribute to a better understanding of the rock-breaking mechanism under dynamic loads with a certain excitation frequency.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"49 19","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on vibration characteristics of rock based on circular plate and cylinder model: dimension, geometric shape and boundary condition\",\"authors\":\"Zhao Zhang, Bing Liu, Jianlin Liu\",\"doi\":\"10.1093/jom/ufae021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The declaration on the “natural frequency of rock” exists in many engineering areas, and it has caused many misunderstandings. Different from the mass-spring model usually used, the circular plate model and cylinder model are respectively established to clarify the relationship between the vibration characteristics (including natural frequency and vibration mode) and their influencing factors of rock by modal analysis. The effect of dimension, geometric shape, and boundary condition on the vibration characteristics of rock with plate structure is investigated, in which the semi-analytical solutions agree well with the simulation results. By using the cylinder model based upon the Lamé-Navier Eq., the effect of such influencing factors on the vibration characteristics of the block rock sample is further studied and verified by numerical simulation and experimental results. The results suggest that the natural frequency of “rock” (including the experimental rock sample) is strongly dependent on the dimension, geometric shape, and boundary condition. The resonance frequency observed in the excitation experiment is not only closely associated with the natural frequency of a specific order, but also dependent on the dominance of the particular vibration mode. These findings contribute to a better understanding of the rock-breaking mechanism under dynamic loads with a certain excitation frequency.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"49 19\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufae021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufae021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

关于 "岩石固有频率 "的说法在许多工程领域都存在,并造成了许多误解。与通常使用的质量-弹簧模型不同,本文分别建立了圆板模型和圆柱体模型,通过模态分析阐明了岩石振动特性(包括固有频率和振动模式)及其影响因素之间的关系。研究了尺寸、几何形状和边界条件对板结构岩石振动特性的影响,半解析解与模拟结果吻合良好。通过使用基于 Lamé-Navier 公式的圆柱体模型,进一步研究了这些影响因素对块状岩石样本振动特性的影响,并通过数值模拟和实验结果进行了验证。结果表明,"岩石"(包括实验岩石样本)的固有频率与尺寸、几何形状和边界条件密切相关。激励实验中观察到的共振频率不仅与特定阶次的固有频率密切相关,而且还取决于特定振动模式的主导地位。这些发现有助于更好地理解在一定激振频率的动载荷作用下的破岩机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on vibration characteristics of rock based on circular plate and cylinder model: dimension, geometric shape and boundary condition
The declaration on the “natural frequency of rock” exists in many engineering areas, and it has caused many misunderstandings. Different from the mass-spring model usually used, the circular plate model and cylinder model are respectively established to clarify the relationship between the vibration characteristics (including natural frequency and vibration mode) and their influencing factors of rock by modal analysis. The effect of dimension, geometric shape, and boundary condition on the vibration characteristics of rock with plate structure is investigated, in which the semi-analytical solutions agree well with the simulation results. By using the cylinder model based upon the Lamé-Navier Eq., the effect of such influencing factors on the vibration characteristics of the block rock sample is further studied and verified by numerical simulation and experimental results. The results suggest that the natural frequency of “rock” (including the experimental rock sample) is strongly dependent on the dimension, geometric shape, and boundary condition. The resonance frequency observed in the excitation experiment is not only closely associated with the natural frequency of a specific order, but also dependent on the dominance of the particular vibration mode. These findings contribute to a better understanding of the rock-breaking mechanism under dynamic loads with a certain excitation frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信