Sujata Dhar, Nijat Mammadaliyev, Robert Heinkelmann, Susanne Glaser, Shrishail Raut, Arnab Laha, Ashutosh Tiwari, Harald Schuh, Onkar Dikshit, Nagarajan Balasubramanian
{"title":"服务于国家和全球目标的印度大地测量 VLBI 拟议计划","authors":"Sujata Dhar, Nijat Mammadaliyev, Robert Heinkelmann, Susanne Glaser, Shrishail Raut, Arnab Laha, Ashutosh Tiwari, Harald Schuh, Onkar Dikshit, Nagarajan Balasubramanian","doi":"10.1007/s10686-024-09942-y","DOIUrl":null,"url":null,"abstract":"<div><p>Project “Saptarshi” was initiated by the National Centre for Geodesy, Indian Institute of Technology Kanpur to set up the modern space geodetic infrastructure in the country. This project primarily focuses on the establishment of an Indian Geodetic VLBI network. The purpose of this paper is to anticipate the potential impact of the geodetic VLBI network in India to the national and international scientific products. Saptarshi proposes to establish three VLBI stations along with a correlator at one facility. In this work, we investigate how adding proposed Indian VLBI antennas will affect terrestrial and celestial reference frames as well as Earth Orientation Parameters (EOP). Additionally, we shortly demonstrate scenario of VLBI observations of one of the Indian regional navigation satellite system called Navigation with Indian Constellation (NavIC) to determine its orbit. Two VLBI networks were simulated to observe the NAVIC satellite along with quasars to check how well the orbit of this satellite can be recovered from VLBI observations. To investigate the impact on the terrestrial reference frame, three types of 24-h sessions, IVS-R1 (legacy), IVS-VGOS (next generation VLBI), and IVS-AOV (Asia Oceania VLBI), were studied to examine the gain in precision of geodetic parameters when adding the proposed Indian VLBI antennas. IVS-type Intensive sessions were also investigated with the proposed Indian antennas to assess the improvement in the estimation of dUT1 as one important VLBI product. Furthermore, the u-v coverage of some radio sources of the southern hemisphere was compared utilizing observing networks with and without the proposed Indian antennas. Apart from that, we briefly discuss other benefits of the establishment of Indian geodetic VLBI in the scientific fields of atmosphere, metrology, and space missions.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The proposed plan of geodetic VLBI in India serving national and global objectives\",\"authors\":\"Sujata Dhar, Nijat Mammadaliyev, Robert Heinkelmann, Susanne Glaser, Shrishail Raut, Arnab Laha, Ashutosh Tiwari, Harald Schuh, Onkar Dikshit, Nagarajan Balasubramanian\",\"doi\":\"10.1007/s10686-024-09942-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Project “Saptarshi” was initiated by the National Centre for Geodesy, Indian Institute of Technology Kanpur to set up the modern space geodetic infrastructure in the country. This project primarily focuses on the establishment of an Indian Geodetic VLBI network. The purpose of this paper is to anticipate the potential impact of the geodetic VLBI network in India to the national and international scientific products. Saptarshi proposes to establish three VLBI stations along with a correlator at one facility. In this work, we investigate how adding proposed Indian VLBI antennas will affect terrestrial and celestial reference frames as well as Earth Orientation Parameters (EOP). Additionally, we shortly demonstrate scenario of VLBI observations of one of the Indian regional navigation satellite system called Navigation with Indian Constellation (NavIC) to determine its orbit. Two VLBI networks were simulated to observe the NAVIC satellite along with quasars to check how well the orbit of this satellite can be recovered from VLBI observations. To investigate the impact on the terrestrial reference frame, three types of 24-h sessions, IVS-R1 (legacy), IVS-VGOS (next generation VLBI), and IVS-AOV (Asia Oceania VLBI), were studied to examine the gain in precision of geodetic parameters when adding the proposed Indian VLBI antennas. IVS-type Intensive sessions were also investigated with the proposed Indian antennas to assess the improvement in the estimation of dUT1 as one important VLBI product. Furthermore, the u-v coverage of some radio sources of the southern hemisphere was compared utilizing observing networks with and without the proposed Indian antennas. Apart from that, we briefly discuss other benefits of the establishment of Indian geodetic VLBI in the scientific fields of atmosphere, metrology, and space missions.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"57 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-024-09942-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09942-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The proposed plan of geodetic VLBI in India serving national and global objectives
Project “Saptarshi” was initiated by the National Centre for Geodesy, Indian Institute of Technology Kanpur to set up the modern space geodetic infrastructure in the country. This project primarily focuses on the establishment of an Indian Geodetic VLBI network. The purpose of this paper is to anticipate the potential impact of the geodetic VLBI network in India to the national and international scientific products. Saptarshi proposes to establish three VLBI stations along with a correlator at one facility. In this work, we investigate how adding proposed Indian VLBI antennas will affect terrestrial and celestial reference frames as well as Earth Orientation Parameters (EOP). Additionally, we shortly demonstrate scenario of VLBI observations of one of the Indian regional navigation satellite system called Navigation with Indian Constellation (NavIC) to determine its orbit. Two VLBI networks were simulated to observe the NAVIC satellite along with quasars to check how well the orbit of this satellite can be recovered from VLBI observations. To investigate the impact on the terrestrial reference frame, three types of 24-h sessions, IVS-R1 (legacy), IVS-VGOS (next generation VLBI), and IVS-AOV (Asia Oceania VLBI), were studied to examine the gain in precision of geodetic parameters when adding the proposed Indian VLBI antennas. IVS-type Intensive sessions were also investigated with the proposed Indian antennas to assess the improvement in the estimation of dUT1 as one important VLBI product. Furthermore, the u-v coverage of some radio sources of the southern hemisphere was compared utilizing observing networks with and without the proposed Indian antennas. Apart from that, we briefly discuss other benefits of the establishment of Indian geodetic VLBI in the scientific fields of atmosphere, metrology, and space missions.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.