U. K. Maity, Namitha Janardhanan, Manoravi Periasamy
{"title":"利用激光诱导击穿光谱定量测定铀-锆燃料模拟溶解液中的锆含量","authors":"U. K. Maity, Namitha Janardhanan, Manoravi Periasamy","doi":"10.1515/ract-2023-0208","DOIUrl":null,"url":null,"abstract":"\n Estimation of Zr in fresh and irradiated metal alloy fuel is important. The homogeneous dissolver solution represents the fuel composition better compared to a highly heterogeneous solid pellet. The present study employs LIBS to determine Zr in the simulated dissolver solution. Four different compositions of U–Zr samples where the Zr/U ratio varies from 0.04 to 0.18 % are analyzed by LIBS with an in-house designed liquid sample cell. A good correlation coefficient is achieved for the measurements in the calibration plot. The results for identifying non-overlapping peaks, calibration plot, precision, deviation, and detection limit are discussed in detail. Two set of solid samples, an oxide pellet and metal alloy with similar Zr/U composition, are also analyzed by LIBS. The results obtained from these three set of samples are inter-compared, and the reason for getting a better Zr/U intensity ratio for a dried coating of sample on aluminium for a given composition is explained.","PeriodicalId":21167,"journal":{"name":"Radiochimica Acta","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of Zr in simulated dissolver solution of U–Zr fuel by laser-induced breakdown spectroscopy\",\"authors\":\"U. K. Maity, Namitha Janardhanan, Manoravi Periasamy\",\"doi\":\"10.1515/ract-2023-0208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Estimation of Zr in fresh and irradiated metal alloy fuel is important. The homogeneous dissolver solution represents the fuel composition better compared to a highly heterogeneous solid pellet. The present study employs LIBS to determine Zr in the simulated dissolver solution. Four different compositions of U–Zr samples where the Zr/U ratio varies from 0.04 to 0.18 % are analyzed by LIBS with an in-house designed liquid sample cell. A good correlation coefficient is achieved for the measurements in the calibration plot. The results for identifying non-overlapping peaks, calibration plot, precision, deviation, and detection limit are discussed in detail. Two set of solid samples, an oxide pellet and metal alloy with similar Zr/U composition, are also analyzed by LIBS. The results obtained from these three set of samples are inter-compared, and the reason for getting a better Zr/U intensity ratio for a dried coating of sample on aluminium for a given composition is explained.\",\"PeriodicalId\":21167,\"journal\":{\"name\":\"Radiochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/ract-2023-0208\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/ract-2023-0208","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Quantification of Zr in simulated dissolver solution of U–Zr fuel by laser-induced breakdown spectroscopy
Estimation of Zr in fresh and irradiated metal alloy fuel is important. The homogeneous dissolver solution represents the fuel composition better compared to a highly heterogeneous solid pellet. The present study employs LIBS to determine Zr in the simulated dissolver solution. Four different compositions of U–Zr samples where the Zr/U ratio varies from 0.04 to 0.18 % are analyzed by LIBS with an in-house designed liquid sample cell. A good correlation coefficient is achieved for the measurements in the calibration plot. The results for identifying non-overlapping peaks, calibration plot, precision, deviation, and detection limit are discussed in detail. Two set of solid samples, an oxide pellet and metal alloy with similar Zr/U composition, are also analyzed by LIBS. The results obtained from these three set of samples are inter-compared, and the reason for getting a better Zr/U intensity ratio for a dried coating of sample on aluminium for a given composition is explained.