具有 Ornstein-Uhlenbeck 过程的随机 SIS 流行病模型的动力学行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huina Zhang, Jianguo Sun, Peng Yu, Daqing Jiang
{"title":"具有 Ornstein-Uhlenbeck 过程的随机 SIS 流行病模型的动力学行为","authors":"Huina Zhang, Jianguo Sun, Peng Yu, Daqing Jiang","doi":"10.3390/axioms13060353","DOIUrl":null,"url":null,"abstract":"Controlling infectious diseases has become an increasingly complex issue, and vaccination has become a common preventive measure to reduce infection rates. It has been thought that vaccination protects the population. However, there is no fully effective vaccine. This is based on the fact that it has long been assumed that the immune system produces corresponding antibodies after vaccination, but usually does not achieve the level of complete protection for undergoing environmental fluctuations. In this paper, we investigate a stochastic SIS epidemic model with incomplete inoculation, which is perturbed by the Ornstein–Uhlenbeck process and Brownian motion. We determine the existence of a unique global solution for the stochastic SIS epidemic model and derive control conditions for the extinction. By constructing two suitable Lyapunov functions and using the ergodicity of the Ornstein–Uhlenbeck process, we establish sufficient conditions for the existence of stationary distribution, which means the disease will prevail. Furthermore, we obtain the exact expression of the probability density function near the pseudo-equilibrium point of the stochastic model while addressing the four-dimensional Fokker–Planck equation under the same conditions. Finally, we conduct several numerical simulations to validate the theoretical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Behaviors of Stochastic SIS Epidemic Model with Ornstein–Uhlenbeck Process\",\"authors\":\"Huina Zhang, Jianguo Sun, Peng Yu, Daqing Jiang\",\"doi\":\"10.3390/axioms13060353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling infectious diseases has become an increasingly complex issue, and vaccination has become a common preventive measure to reduce infection rates. It has been thought that vaccination protects the population. However, there is no fully effective vaccine. This is based on the fact that it has long been assumed that the immune system produces corresponding antibodies after vaccination, but usually does not achieve the level of complete protection for undergoing environmental fluctuations. In this paper, we investigate a stochastic SIS epidemic model with incomplete inoculation, which is perturbed by the Ornstein–Uhlenbeck process and Brownian motion. We determine the existence of a unique global solution for the stochastic SIS epidemic model and derive control conditions for the extinction. By constructing two suitable Lyapunov functions and using the ergodicity of the Ornstein–Uhlenbeck process, we establish sufficient conditions for the existence of stationary distribution, which means the disease will prevail. Furthermore, we obtain the exact expression of the probability density function near the pseudo-equilibrium point of the stochastic model while addressing the four-dimensional Fokker–Planck equation under the same conditions. Finally, we conduct several numerical simulations to validate the theoretical results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13060353\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13060353","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

控制传染病已成为一个日益复杂的问题,接种疫苗已成为降低感染率的常见预防措施。人们一直认为接种疫苗可以保护人群。然而,目前还没有完全有效的疫苗。这是因为长期以来,人们一直认为接种疫苗后免疫系统会产生相应的抗体,但通常无法达到完全保护的水平,以应对环境波动。在本文中,我们研究了一个具有不完全接种的随机 SIS 流行病模型,该模型受到 Ornstein-Uhlenbeck 过程和布朗运动的扰动。我们确定了随机 SIS 流行病模型存在唯一的全局解,并推导出了灭绝的控制条件。通过构建两个合适的 Lyapunov 函数并利用 Ornstein-Uhlenbeck 过程的遍历性,我们建立了静态分布存在的充分条件,这意味着疾病将流行。此外,我们还得到了随机模型伪平衡点附近概率密度函数的精确表达式,同时在相同条件下求解了四维福克-普朗克方程。最后,我们进行了多次数值模拟来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical Behaviors of Stochastic SIS Epidemic Model with Ornstein–Uhlenbeck Process
Controlling infectious diseases has become an increasingly complex issue, and vaccination has become a common preventive measure to reduce infection rates. It has been thought that vaccination protects the population. However, there is no fully effective vaccine. This is based on the fact that it has long been assumed that the immune system produces corresponding antibodies after vaccination, but usually does not achieve the level of complete protection for undergoing environmental fluctuations. In this paper, we investigate a stochastic SIS epidemic model with incomplete inoculation, which is perturbed by the Ornstein–Uhlenbeck process and Brownian motion. We determine the existence of a unique global solution for the stochastic SIS epidemic model and derive control conditions for the extinction. By constructing two suitable Lyapunov functions and using the ergodicity of the Ornstein–Uhlenbeck process, we establish sufficient conditions for the existence of stationary distribution, which means the disease will prevail. Furthermore, we obtain the exact expression of the probability density function near the pseudo-equilibrium point of the stochastic model while addressing the four-dimensional Fokker–Planck equation under the same conditions. Finally, we conduct several numerical simulations to validate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信