K. Brown, P. Jain, Nicholas J.R. Hebda, Nicholas Conder, Richard J. Hebda, Les C. Cwynar
{"title":"加拿大育空中部北方全新世植被和野火干扰","authors":"K. Brown, P. Jain, Nicholas J.R. Hebda, Nicholas Conder, Richard J. Hebda, Les C. Cwynar","doi":"10.1139/as-2023-0070","DOIUrl":null,"url":null,"abstract":"Sediment cores were collected from Wrong (WL) and Lenore (LL) lakes in boreal central Yukon Territory, Canada, spanning circa 6000 years. Analyses of pollen, charcoal, magnetic susceptibility, levoglucosan, and down-scaled paleoclimatic data reveal the vegetation history and character/drivers of Holocene fire disturbance. Boreal forest has persisted in the region for millennia, with a regional mid-Holocene expansion of Picea mariana followed by expansion of Pinus contorta in the latest Holocene. The shortest reconstructed fire return intervals (FRI; ca. 110-125 years) occurred in the mid-Holocene, coincident with the development of highly flammable Picea-dominated forest and warm, dry summers that were characterized by elevated JJA Z500 anomalies and associated with an eastward/intense Aleutian Low. In the late-Holocene, FRI increased to ca. 240 years at WL and 280 years LL. Drivers of this change include regional cooling and increased precipitation, with a westward/weaker Aleutian Low position delivering more moisture to interior Yukon. Longer FRIs allowed for greater fuel accumulation between fires, enhancing fire size/severity. While higher fire frequency is noted in the mid-Holocene and increased fire size/severity in the late-Holocene, recent changes in Yukon fire disturbance suggest that the fire regime may soon lie outside the natural range of mid- and late-Holocene variability.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holocene vegetation and wildfire disturbance in boreal central Yukon, Canada\",\"authors\":\"K. Brown, P. Jain, Nicholas J.R. Hebda, Nicholas Conder, Richard J. Hebda, Les C. Cwynar\",\"doi\":\"10.1139/as-2023-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sediment cores were collected from Wrong (WL) and Lenore (LL) lakes in boreal central Yukon Territory, Canada, spanning circa 6000 years. Analyses of pollen, charcoal, magnetic susceptibility, levoglucosan, and down-scaled paleoclimatic data reveal the vegetation history and character/drivers of Holocene fire disturbance. Boreal forest has persisted in the region for millennia, with a regional mid-Holocene expansion of Picea mariana followed by expansion of Pinus contorta in the latest Holocene. The shortest reconstructed fire return intervals (FRI; ca. 110-125 years) occurred in the mid-Holocene, coincident with the development of highly flammable Picea-dominated forest and warm, dry summers that were characterized by elevated JJA Z500 anomalies and associated with an eastward/intense Aleutian Low. In the late-Holocene, FRI increased to ca. 240 years at WL and 280 years LL. Drivers of this change include regional cooling and increased precipitation, with a westward/weaker Aleutian Low position delivering more moisture to interior Yukon. Longer FRIs allowed for greater fuel accumulation between fires, enhancing fire size/severity. While higher fire frequency is noted in the mid-Holocene and increased fire size/severity in the late-Holocene, recent changes in Yukon fire disturbance suggest that the fire regime may soon lie outside the natural range of mid- and late-Holocene variability.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 20\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/as-2023-0070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2023-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Holocene vegetation and wildfire disturbance in boreal central Yukon, Canada
Sediment cores were collected from Wrong (WL) and Lenore (LL) lakes in boreal central Yukon Territory, Canada, spanning circa 6000 years. Analyses of pollen, charcoal, magnetic susceptibility, levoglucosan, and down-scaled paleoclimatic data reveal the vegetation history and character/drivers of Holocene fire disturbance. Boreal forest has persisted in the region for millennia, with a regional mid-Holocene expansion of Picea mariana followed by expansion of Pinus contorta in the latest Holocene. The shortest reconstructed fire return intervals (FRI; ca. 110-125 years) occurred in the mid-Holocene, coincident with the development of highly flammable Picea-dominated forest and warm, dry summers that were characterized by elevated JJA Z500 anomalies and associated with an eastward/intense Aleutian Low. In the late-Holocene, FRI increased to ca. 240 years at WL and 280 years LL. Drivers of this change include regional cooling and increased precipitation, with a westward/weaker Aleutian Low position delivering more moisture to interior Yukon. Longer FRIs allowed for greater fuel accumulation between fires, enhancing fire size/severity. While higher fire frequency is noted in the mid-Holocene and increased fire size/severity in the late-Holocene, recent changes in Yukon fire disturbance suggest that the fire regime may soon lie outside the natural range of mid- and late-Holocene variability.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.