改进型蚁群算法在优化电动汽车充电路径中的应用

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhiqun Qi
{"title":"改进型蚁群算法在优化电动汽车充电路径中的应用","authors":"Zhiqun Qi","doi":"10.3390/wevj15060230","DOIUrl":null,"url":null,"abstract":"In current traffic congestion scenarios, electric vehicles (EVs) have the problem of reduced battery life and continuous decline in endurance. Therefore, this study proposes an optimization method for electric vehicle charging scheduling based onthe ant colony optimization algorithm with adaptive dynamic search (ADS-ACO), and conducts experimental verification on it. The experiment revealed that in the four benchmark functions, the research algorithm has the fastest convergence speed and can achieve convergence in most of them. In the validation of effectiveness, the optimal solution for vehicle time consumption under the ADS-ACO algorithm in the output of the algorithm with a stationary period and a remaining battery energy of 15 kW·h was 2.146 h in the regular road network. In the initial results of 15 kW·h under changes in road conditions from peak to peak periods, the total energy consumption of vehicles under the research algorithm was 4.678 kW·h and 4.656 kW·h under regular and irregular road networks, respectively. The change results were 4.509 kW·h and 4.656 kW·h, respectively. The initial results of 10 kW·h were 4.755 kW·h and 4.873 kW·h, respectively. The change results were 4.461 kW·h and 4.656 kW·h, respectively, which are lower than the comparison algorithm. In stability verification, research algorithms can find the optimal path under any conditions. The algorithm proposed in the study has been demonstrated to be highly effective and stable in electric vehicle charging path planning. It represents a novel solution for electric vehicle charging management and is expected to significantly enhance the range of electric vehicles in practical applications.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Improved Ant Colony Algorithm in Optimizing the Charging Path of Electric Vehicles\",\"authors\":\"Zhiqun Qi\",\"doi\":\"10.3390/wevj15060230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In current traffic congestion scenarios, electric vehicles (EVs) have the problem of reduced battery life and continuous decline in endurance. Therefore, this study proposes an optimization method for electric vehicle charging scheduling based onthe ant colony optimization algorithm with adaptive dynamic search (ADS-ACO), and conducts experimental verification on it. The experiment revealed that in the four benchmark functions, the research algorithm has the fastest convergence speed and can achieve convergence in most of them. In the validation of effectiveness, the optimal solution for vehicle time consumption under the ADS-ACO algorithm in the output of the algorithm with a stationary period and a remaining battery energy of 15 kW·h was 2.146 h in the regular road network. In the initial results of 15 kW·h under changes in road conditions from peak to peak periods, the total energy consumption of vehicles under the research algorithm was 4.678 kW·h and 4.656 kW·h under regular and irregular road networks, respectively. The change results were 4.509 kW·h and 4.656 kW·h, respectively. The initial results of 10 kW·h were 4.755 kW·h and 4.873 kW·h, respectively. The change results were 4.461 kW·h and 4.656 kW·h, respectively, which are lower than the comparison algorithm. In stability verification, research algorithms can find the optimal path under any conditions. The algorithm proposed in the study has been demonstrated to be highly effective and stable in electric vehicle charging path planning. It represents a novel solution for electric vehicle charging management and is expected to significantly enhance the range of electric vehicles in practical applications.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj15060230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15060230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在当前交通拥堵的情况下,电动汽车(EV)存在电池寿命缩短、续航能力持续下降的问题。因此,本研究提出了一种基于蚁群优化算法与自适应动态搜索(ADS-ACO)的电动汽车充电调度优化方法,并对其进行了实验验证。实验结果表明,在四个基准函数中,该研究算法的收敛速度最快,大部分函数都能实现收敛。在有效性验证中,在常规路网中,静止期和电池剩余电量为 15 kW-h 时,ADS-ACO 算法输出下的车辆耗时最优解为 2.146 h。在路况从高峰期到平峰期变化的 15 kW-h 初始结果中,研究算法下的车辆总能耗在常规路网和不规则路网下分别为 4.678 kW-h 和 4.656 kW-h。变化结果分别为 4.509 kW-h 和 4.656 kW-h。10 kW-h 的初始结果分别为 4.755 kW-h 和 4.873 kW-h。变化结果分别为 4.461 kW-h 和 4.656 kW-h,低于对比算法。在稳定性验证中,研究算法可以在任何条件下找到最优路径。研究中提出的算法在电动汽车充电路径规划中被证明是高效、稳定的。它代表了电动汽车充电管理的一种新型解决方案,有望在实际应用中显著提高电动汽车的续航能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Improved Ant Colony Algorithm in Optimizing the Charging Path of Electric Vehicles
In current traffic congestion scenarios, electric vehicles (EVs) have the problem of reduced battery life and continuous decline in endurance. Therefore, this study proposes an optimization method for electric vehicle charging scheduling based onthe ant colony optimization algorithm with adaptive dynamic search (ADS-ACO), and conducts experimental verification on it. The experiment revealed that in the four benchmark functions, the research algorithm has the fastest convergence speed and can achieve convergence in most of them. In the validation of effectiveness, the optimal solution for vehicle time consumption under the ADS-ACO algorithm in the output of the algorithm with a stationary period and a remaining battery energy of 15 kW·h was 2.146 h in the regular road network. In the initial results of 15 kW·h under changes in road conditions from peak to peak periods, the total energy consumption of vehicles under the research algorithm was 4.678 kW·h and 4.656 kW·h under regular and irregular road networks, respectively. The change results were 4.509 kW·h and 4.656 kW·h, respectively. The initial results of 10 kW·h were 4.755 kW·h and 4.873 kW·h, respectively. The change results were 4.461 kW·h and 4.656 kW·h, respectively, which are lower than the comparison algorithm. In stability verification, research algorithms can find the optimal path under any conditions. The algorithm proposed in the study has been demonstrated to be highly effective and stable in electric vehicle charging path planning. It represents a novel solution for electric vehicle charging management and is expected to significantly enhance the range of electric vehicles in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信