二硫化钼和氟化烷氧基铝酸镁电解质在可充电镁电池中的兼容性

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Omar Falyouna, Mohd Faizul Idham, Osama Eljamal, Toshihiko Mandai
{"title":"二硫化钼和氟化烷氧基铝酸镁电解质在可充电镁电池中的兼容性","authors":"Omar Falyouna,&nbsp;Mohd Faizul Idham,&nbsp;Osama Eljamal,&nbsp;Toshihiko Mandai","doi":"10.1002/batt.202400231","DOIUrl":null,"url":null,"abstract":"<p>Molybdenum disulfide (MoS<sub>2</sub>)-based cathodes have exhibited good electrochemical reactions in all phenyl complex (APC) electrolytes. However, APC electrolytes are highly corrosive and susceptible to oxidation. Alternatively, magnesium fluorinated alkoxyaluminate electrolyte (Mg[Al(HFIP)<sub>4</sub>]<sub>2</sub>) is a pioneering chloride-free electrolyte with remarkable electrochemical activity in rechargeable Mg batteries (RMBs). This study aims to investigate the compatibility of various MoS<sub>2</sub> nanomaterials with Mg[Al(HFIP)<sub>4</sub>]<sub>2</sub> in RMBs. Seven MoS<sub>2</sub> nanomaterials were synthesized under different hydro/solvothermal conditions and evaluated as cathode materials in RMBs. The results revealed that the electrochemical activity of the as-synthesized MoS<sub>2</sub> in RMBs significantly varied and MoS<sub>2</sub> with high content of 1T-phase (M5) exhibited the best specific capacity of ca. 35 mAh g<sup>−1</sup>. Heteroatom doping, graphene oxide (GO) incorporation, and dual-salt electrolytes were employed to enhance the electrochemical performance of M5. The electrochemical tests showed that all doped-MoS<sub>2</sub> and GO-MoS<sub>2</sub> delivered poor specific capacities (&lt;20 mAh g<sup>−1</sup>), properly due to the disorder of the cathode material and the entrapment of Mg<sup>2+</sup> ions. In contrast, dual-salt electrolytes (0.3 M Mg[Al(HFIP)<sub>4</sub>]<sub>2</sub>/0.3 M LiCl) improved the initial specific capacity by 242 %. This is attributed to the preferential intercalation of Li<sup>+</sup> ions that reduces the diffusion energy barrier and facilitates the intercalation of Mg<sup>+2</sup> ions.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400231","citationCount":"0","resultStr":"{\"title\":\"Compatibility of Molybdenum Disulfide and Magnesium Fluorinated Alkoxyaluminate Electrolytes in Rechargeable Mg Batteries\",\"authors\":\"Omar Falyouna,&nbsp;Mohd Faizul Idham,&nbsp;Osama Eljamal,&nbsp;Toshihiko Mandai\",\"doi\":\"10.1002/batt.202400231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molybdenum disulfide (MoS<sub>2</sub>)-based cathodes have exhibited good electrochemical reactions in all phenyl complex (APC) electrolytes. However, APC electrolytes are highly corrosive and susceptible to oxidation. Alternatively, magnesium fluorinated alkoxyaluminate electrolyte (Mg[Al(HFIP)<sub>4</sub>]<sub>2</sub>) is a pioneering chloride-free electrolyte with remarkable electrochemical activity in rechargeable Mg batteries (RMBs). This study aims to investigate the compatibility of various MoS<sub>2</sub> nanomaterials with Mg[Al(HFIP)<sub>4</sub>]<sub>2</sub> in RMBs. Seven MoS<sub>2</sub> nanomaterials were synthesized under different hydro/solvothermal conditions and evaluated as cathode materials in RMBs. The results revealed that the electrochemical activity of the as-synthesized MoS<sub>2</sub> in RMBs significantly varied and MoS<sub>2</sub> with high content of 1T-phase (M5) exhibited the best specific capacity of ca. 35 mAh g<sup>−1</sup>. Heteroatom doping, graphene oxide (GO) incorporation, and dual-salt electrolytes were employed to enhance the electrochemical performance of M5. The electrochemical tests showed that all doped-MoS<sub>2</sub> and GO-MoS<sub>2</sub> delivered poor specific capacities (&lt;20 mAh g<sup>−1</sup>), properly due to the disorder of the cathode material and the entrapment of Mg<sup>2+</sup> ions. In contrast, dual-salt electrolytes (0.3 M Mg[Al(HFIP)<sub>4</sub>]<sub>2</sub>/0.3 M LiCl) improved the initial specific capacity by 242 %. This is attributed to the preferential intercalation of Li<sup>+</sup> ions that reduces the diffusion energy barrier and facilitates the intercalation of Mg<sup>+2</sup> ions.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400231\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400231\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400231","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

基于二硫化钼(MoS2)的阴极在所有苯基络合物(APC)电解质中都表现出良好的电化学反应。然而,APC 电解质具有很强的腐蚀性,容易被氧化。另外,氟化烷氧基铝酸镁电解质(Mg[Al(HFIP)4]2)是一种开创性的无氯化物电解质,在可充电镁电池(RMB)中具有显著的电化学活性。本研究旨在探讨各种 MoS2 纳米材料与 Mg[Al(HFIP)4]2 在人民币电池中的相容性。研究人员在不同的水热条件下合成了七种 MoS2 纳米材料,并将其作为人民币中的阴极材料进行了评估。结果表明,合成的 MoS2 在人民币中的电化学活性存在显著差异,其中 1T 相(M5)含量高的 MoS2 的比容量最好,约为 35 mAh g-1。为了提高 M5 的电化学性能,研究人员采用了杂原子掺杂、氧化石墨烯(GO)掺入和双盐电解质等方法。电化学测试表明,所有掺杂-MoS2 和 GO-MoS2 的比容量都很低(< 20 mAh g-1),这主要是由于阴极材料的无序和 Mg2+ 离子的截留。相比之下,双盐电解质(0.3 M Mg[Al(HFIP)4]2/0.3 M LiCl)将初始比容量提高了 242%。这归因于 Li+ 离子的优先插层降低了扩散能垒并促进了 Mg+2 离子的插层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compatibility of Molybdenum Disulfide and Magnesium Fluorinated Alkoxyaluminate Electrolytes in Rechargeable Mg Batteries

Compatibility of Molybdenum Disulfide and Magnesium Fluorinated Alkoxyaluminate Electrolytes in Rechargeable Mg Batteries

Molybdenum disulfide (MoS2)-based cathodes have exhibited good electrochemical reactions in all phenyl complex (APC) electrolytes. However, APC electrolytes are highly corrosive and susceptible to oxidation. Alternatively, magnesium fluorinated alkoxyaluminate electrolyte (Mg[Al(HFIP)4]2) is a pioneering chloride-free electrolyte with remarkable electrochemical activity in rechargeable Mg batteries (RMBs). This study aims to investigate the compatibility of various MoS2 nanomaterials with Mg[Al(HFIP)4]2 in RMBs. Seven MoS2 nanomaterials were synthesized under different hydro/solvothermal conditions and evaluated as cathode materials in RMBs. The results revealed that the electrochemical activity of the as-synthesized MoS2 in RMBs significantly varied and MoS2 with high content of 1T-phase (M5) exhibited the best specific capacity of ca. 35 mAh g−1. Heteroatom doping, graphene oxide (GO) incorporation, and dual-salt electrolytes were employed to enhance the electrochemical performance of M5. The electrochemical tests showed that all doped-MoS2 and GO-MoS2 delivered poor specific capacities (<20 mAh g−1), properly due to the disorder of the cathode material and the entrapment of Mg2+ ions. In contrast, dual-salt electrolytes (0.3 M Mg[Al(HFIP)4]2/0.3 M LiCl) improved the initial specific capacity by 242 %. This is attributed to the preferential intercalation of Li+ ions that reduces the diffusion energy barrier and facilitates the intercalation of Mg+2 ions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信