{"title":"带边界条件的多期隐式微分方程的存在性和乌拉姆稳定性分析","authors":"Peiguang Wang, Bing Han, Junyan Bao","doi":"10.3390/fractalfract8060311","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a class of multi-term implicit fractional differential equation with boundary conditions. The application of the Schauder fixed point theorem and the Banach fixed point theorem allows us to establish the criterion for a solution that exists for the given equation, and the solution is unique. Afterwards, we give the criteria of Ulam–Hyers stability and Ulam–Hyers–Rassias stability. Additionally, we present an example to illustrate the practical application and effectiveness of the results.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Existence and Ulam Stability Analysis of a Multi-Term Implicit Fractional Differential Equation with Boundary Conditions\",\"authors\":\"Peiguang Wang, Bing Han, Junyan Bao\",\"doi\":\"10.3390/fractalfract8060311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a class of multi-term implicit fractional differential equation with boundary conditions. The application of the Schauder fixed point theorem and the Banach fixed point theorem allows us to establish the criterion for a solution that exists for the given equation, and the solution is unique. Afterwards, we give the criteria of Ulam–Hyers stability and Ulam–Hyers–Rassias stability. Additionally, we present an example to illustrate the practical application and effectiveness of the results.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8060311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8060311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Existence and Ulam Stability Analysis of a Multi-Term Implicit Fractional Differential Equation with Boundary Conditions
In this paper, we investigate a class of multi-term implicit fractional differential equation with boundary conditions. The application of the Schauder fixed point theorem and the Banach fixed point theorem allows us to establish the criterion for a solution that exists for the given equation, and the solution is unique. Afterwards, we give the criteria of Ulam–Hyers stability and Ulam–Hyers–Rassias stability. Additionally, we present an example to illustrate the practical application and effectiveness of the results.