{"title":"Robotica:混合机器人的解耦弹性刚度建模","authors":"Baoyu Wang, Peixing Li, Chao Yang, Xudong Hu, Yanzheng Zhao","doi":"10.1017/s0263574724000675","DOIUrl":null,"url":null,"abstract":"\n A decoupling method is proposed for the elastic stiffness modeling of hybrid robots based on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem. It enables the decoupling of parallel and serial modules, as well as the individual contributions of each elastic component to the mechanism’s stiffness performance. The method is implemented as follows: (1) formulate limb constraint wrenches and corresponding limb stiffness matrix based on the screw theory and strain energy, (2) formulate the overall stiffness matrix of parallel and serial modules corresponding to end of the hybrid robots based on the rigidity principle, principle of virtual work, the wrench transfer formula, and strain energy methods, and (3) obtain and decouple the overall stiffness matrix and deflection of the robot based on the Castigliano’s second theorem. Finally, A planar hybrid structure and the 4SRRR + 6R hybrid robot are used as illustrative examples to implement the proposed method. The results indicate that selectively enhancing the stiffness performance of the mechanism is the most effective approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"5 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotica: decoupled elastostatic stiffness modeling of hybrid robots\",\"authors\":\"Baoyu Wang, Peixing Li, Chao Yang, Xudong Hu, Yanzheng Zhao\",\"doi\":\"10.1017/s0263574724000675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A decoupling method is proposed for the elastic stiffness modeling of hybrid robots based on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem. It enables the decoupling of parallel and serial modules, as well as the individual contributions of each elastic component to the mechanism’s stiffness performance. The method is implemented as follows: (1) formulate limb constraint wrenches and corresponding limb stiffness matrix based on the screw theory and strain energy, (2) formulate the overall stiffness matrix of parallel and serial modules corresponding to end of the hybrid robots based on the rigidity principle, principle of virtual work, the wrench transfer formula, and strain energy methods, and (3) obtain and decouple the overall stiffness matrix and deflection of the robot based on the Castigliano’s second theorem. Finally, A planar hybrid structure and the 4SRRR + 6R hybrid robot are used as illustrative examples to implement the proposed method. The results indicate that selectively enhancing the stiffness performance of the mechanism is the most effective approach.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000675\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Robotica: decoupled elastostatic stiffness modeling of hybrid robots
A decoupling method is proposed for the elastic stiffness modeling of hybrid robots based on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem. It enables the decoupling of parallel and serial modules, as well as the individual contributions of each elastic component to the mechanism’s stiffness performance. The method is implemented as follows: (1) formulate limb constraint wrenches and corresponding limb stiffness matrix based on the screw theory and strain energy, (2) formulate the overall stiffness matrix of parallel and serial modules corresponding to end of the hybrid robots based on the rigidity principle, principle of virtual work, the wrench transfer formula, and strain energy methods, and (3) obtain and decouple the overall stiffness matrix and deflection of the robot based on the Castigliano’s second theorem. Finally, A planar hybrid structure and the 4SRRR + 6R hybrid robot are used as illustrative examples to implement the proposed method. The results indicate that selectively enhancing the stiffness performance of the mechanism is the most effective approach.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.