{"title":"美国的住房搜索活动和基于定量的房价变动预测性","authors":"Rangan Gupta, Damien Moodley","doi":"10.1108/ijhma-12-2023-0166","DOIUrl":null,"url":null,"abstract":"Purpose\nRecent evidence from a linear econometric framework infers that housing search activity, captured from Google Trends data, can predict housing returns for the USA at a national and regional (metropolitan statistical area [MSA]) level. Based on search theory, the authors, however, postulate that search activity can also predict housing returns volatility. This study aims to explore the possibility of using online search activity to predict both housing returns and volatility.\n\nDesign/methodology/approach\nUsing a k-th order non-parametric causality-in-quantiles test allows us to test for predictability in a robust manner over the entire conditional distribution of both housing price returns and its volatility (i.e. squared returns) by controlling for nonlinearity and structural breaks that exist in the data.\n\nFindings\nThe analysis over the monthly period of 2004:01 to 2021:01 produces results indicating that while housing search activity continues to predict aggregate US house price returns, barring the extreme ends of the conditional distribution, volatility is relatively strongly predicted over the entire quantile range considered. The results carry over to an alternative (the generalized autoregressive conditional heteroskedasticity-based) metric of volatility, higher (weekly)-frequency data (over January 2018–March 2021) and to over 84% of the 77 MSAs considered.\n\nOriginality/value\nTo the best of the authors’ knowledge, this is the first study regarding predictability of overall and regional US housing price returns and volatility using search activity, based on a non-parametric higher-order causality-in-quantiles framework, which is insightful to investors, policymakers and academics.\n","PeriodicalId":504638,"journal":{"name":"International Journal of Housing Markets and Analysis","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Housing search activity and quantiles-based predictability of housing price movements in the USA\",\"authors\":\"Rangan Gupta, Damien Moodley\",\"doi\":\"10.1108/ijhma-12-2023-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose\\nRecent evidence from a linear econometric framework infers that housing search activity, captured from Google Trends data, can predict housing returns for the USA at a national and regional (metropolitan statistical area [MSA]) level. Based on search theory, the authors, however, postulate that search activity can also predict housing returns volatility. This study aims to explore the possibility of using online search activity to predict both housing returns and volatility.\\n\\nDesign/methodology/approach\\nUsing a k-th order non-parametric causality-in-quantiles test allows us to test for predictability in a robust manner over the entire conditional distribution of both housing price returns and its volatility (i.e. squared returns) by controlling for nonlinearity and structural breaks that exist in the data.\\n\\nFindings\\nThe analysis over the monthly period of 2004:01 to 2021:01 produces results indicating that while housing search activity continues to predict aggregate US house price returns, barring the extreme ends of the conditional distribution, volatility is relatively strongly predicted over the entire quantile range considered. The results carry over to an alternative (the generalized autoregressive conditional heteroskedasticity-based) metric of volatility, higher (weekly)-frequency data (over January 2018–March 2021) and to over 84% of the 77 MSAs considered.\\n\\nOriginality/value\\nTo the best of the authors’ knowledge, this is the first study regarding predictability of overall and regional US housing price returns and volatility using search activity, based on a non-parametric higher-order causality-in-quantiles framework, which is insightful to investors, policymakers and academics.\\n\",\"PeriodicalId\":504638,\"journal\":{\"name\":\"International Journal of Housing Markets and Analysis\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Housing Markets and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijhma-12-2023-0166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Housing Markets and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijhma-12-2023-0166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Housing search activity and quantiles-based predictability of housing price movements in the USA
Purpose
Recent evidence from a linear econometric framework infers that housing search activity, captured from Google Trends data, can predict housing returns for the USA at a national and regional (metropolitan statistical area [MSA]) level. Based on search theory, the authors, however, postulate that search activity can also predict housing returns volatility. This study aims to explore the possibility of using online search activity to predict both housing returns and volatility.
Design/methodology/approach
Using a k-th order non-parametric causality-in-quantiles test allows us to test for predictability in a robust manner over the entire conditional distribution of both housing price returns and its volatility (i.e. squared returns) by controlling for nonlinearity and structural breaks that exist in the data.
Findings
The analysis over the monthly period of 2004:01 to 2021:01 produces results indicating that while housing search activity continues to predict aggregate US house price returns, barring the extreme ends of the conditional distribution, volatility is relatively strongly predicted over the entire quantile range considered. The results carry over to an alternative (the generalized autoregressive conditional heteroskedasticity-based) metric of volatility, higher (weekly)-frequency data (over January 2018–March 2021) and to over 84% of the 77 MSAs considered.
Originality/value
To the best of the authors’ knowledge, this is the first study regarding predictability of overall and regional US housing price returns and volatility using search activity, based on a non-parametric higher-order causality-in-quantiles framework, which is insightful to investors, policymakers and academics.