Rn$\mathbb {R}^n$ 中超曲面的加权亚历山德罗夫-芬切尔式不等式

IF 0.8 3区 数学 Q2 MATHEMATICS
Jie Wu
{"title":"Rn$\\mathbb {R}^n$ 中超曲面的加权亚历山德罗夫-芬切尔式不等式","authors":"Jie Wu","doi":"10.1112/blms.13089","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the following geometric inequalities in the Euclidean space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {R}^n \\ (n\\geqslant 3)$</annotation>\n </semantics></math>, which are weighted Alexandrov–Fenchel type inequalities,\n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2634-2646"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Alexandrov–Fenchel type inequalities for hypersurfaces in \\n \\n \\n R\\n n\\n \\n $\\\\mathbb {R}^n$\",\"authors\":\"Jie Wu\",\"doi\":\"10.1112/blms.13089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the following geometric inequalities in the Euclidean space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {R}^n \\\\ (n\\\\geqslant 3)$</annotation>\\n </semantics></math>, which are weighted Alexandrov–Fenchel type inequalities,\\n\\n </p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2634-2646\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13089\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13089","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了欧几里得空间中的下列几何不等式,它们是加权亚历山德罗夫-芬切尔式不等式,条件是星形和-凸超曲面。当且仅当 是坐标球面时,等式成立。作为应用,通过在上述不等式中留空,我们可以得到星形和-凸超曲面曲率积分的外半径下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Alexandrov–Fenchel type inequalities for hypersurfaces in R n $\mathbb {R}^n$

In this paper, we prove the following geometric inequalities in the Euclidean space R n ( n 3 ) $\mathbb {R}^n \ (n\geqslant 3)$ , which are weighted Alexandrov–Fenchel type inequalities,

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信