G. Kumaravel, S. Kirthiga, Mohammed Mahmood Hamed Al Shekaili, Qais Hamed Saif Abdullah AL Othmani
{"title":"使用多层感知器神经网络和人工智能的太阳能光伏性能监测和统计预测模型","authors":"G. Kumaravel, S. Kirthiga, Mohammed Mahmood Hamed Al Shekaili, Qais Hamed Saif Abdullah AL Othmani","doi":"10.21123/bsj.2024.10736","DOIUrl":null,"url":null,"abstract":"إن الطبيعة الطبوغرافية لسلطنة عمان تجعل نظام الطاقة الشمسية خيارًا قابلاً للتطبيق وموثوقًا لإنتاج الطاقة بكميات كبيرة في سوق الطاقة المتجددة. تشهد العديد من المناطق الصحراوية في عمان مستويات عالية من الإشعاع الشمسي. وهذا مناسب للأنظمة الكهروضوئية لأن كفاءتها تعتمد بشكل أساسي على الإشعاع الشمسي. ومع ذلك، في التطبيقات في الوقت الفعلي، تؤثر العديد من العوامل البيئية على كفاءة الألواح الشمسية وبالتالي على أدائها. في هذه المقالة، تم اقتراح الشبكة الطبيعية (العصبية) الأمامية متعددة الطبقات (MFFN) لتتبع أداء نظام الطاقة الشمسية الكهروضوئية من أجل استبدال أو تحسين أداء نظام الطاقة الشمسية الكهروضوئية بناءً على حالته الحالية. يتم استخدام خوارزمية الانتشار العكسي (BPA) لتدريب MFFN.","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"نموذج لمراقبة أداء الطاقة الشمسية الكهروضوئية والتنبؤ الإحصائي باستخدام الشبكة العصبية متعددة الطبقات والذكاء الاصطناعي\",\"authors\":\"G. Kumaravel, S. Kirthiga, Mohammed Mahmood Hamed Al Shekaili, Qais Hamed Saif Abdullah AL Othmani\",\"doi\":\"10.21123/bsj.2024.10736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"إن الطبيعة الطبوغرافية لسلطنة عمان تجعل نظام الطاقة الشمسية خيارًا قابلاً للتطبيق وموثوقًا لإنتاج الطاقة بكميات كبيرة في سوق الطاقة المتجددة. تشهد العديد من المناطق الصحراوية في عمان مستويات عالية من الإشعاع الشمسي. وهذا مناسب للأنظمة الكهروضوئية لأن كفاءتها تعتمد بشكل أساسي على الإشعاع الشمسي. ومع ذلك، في التطبيقات في الوقت الفعلي، تؤثر العديد من العوامل البيئية على كفاءة الألواح الشمسية وبالتالي على أدائها. في هذه المقالة، تم اقتراح الشبكة الطبيعية (العصبية) الأمامية متعددة الطبقات (MFFN) لتتبع أداء نظام الطاقة الشمسية الكهروضوئية من أجل استبدال أو تحسين أداء نظام الطاقة الشمسية الكهروضوئية بناءً على حالته الحالية. يتم استخدام خوارزمية الانتشار العكسي (BPA) لتدريب MFFN.\",\"PeriodicalId\":8687,\"journal\":{\"name\":\"Baghdad Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baghdad Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21123/bsj.2024.10736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2024.10736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
نموذج لمراقبة أداء الطاقة الشمسية الكهروضوئية والتنبؤ الإحصائي باستخدام الشبكة العصبية متعددة الطبقات والذكاء الاصطناعي
إن الطبيعة الطبوغرافية لسلطنة عمان تجعل نظام الطاقة الشمسية خيارًا قابلاً للتطبيق وموثوقًا لإنتاج الطاقة بكميات كبيرة في سوق الطاقة المتجددة. تشهد العديد من المناطق الصحراوية في عمان مستويات عالية من الإشعاع الشمسي. وهذا مناسب للأنظمة الكهروضوئية لأن كفاءتها تعتمد بشكل أساسي على الإشعاع الشمسي. ومع ذلك، في التطبيقات في الوقت الفعلي، تؤثر العديد من العوامل البيئية على كفاءة الألواح الشمسية وبالتالي على أدائها. في هذه المقالة، تم اقتراح الشبكة الطبيعية (العصبية) الأمامية متعددة الطبقات (MFFN) لتتبع أداء نظام الطاقة الشمسية الكهروضوئية من أجل استبدال أو تحسين أداء نظام الطاقة الشمسية الكهروضوئية بناءً على حالته الحالية. يتم استخدام خوارزمية الانتشار العكسي (BPA) لتدريب MFFN.
期刊介绍:
The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.