Sang Ho Hwang, Y. Yu, Jichul Kim, Taeyeop Lee, Y. Park, Hyo-Won Kim
{"title":"利用基于移动应用程序的面部标志筛查发育障碍高危儿童的研究","authors":"Sang Ho Hwang, Y. Yu, Jichul Kim, Taeyeop Lee, Y. Park, Hyo-Won Kim","doi":"10.30773/pi.2023.0315","DOIUrl":null,"url":null,"abstract":"Objective Early detection and intervention of developmental disabilities (DDs) are critical to improving the long-term outcomes of afflicted children. In this study, our objective was to utilize facial landmark features from mobile application to distinguish between children with DDs and typically developing (TD) children.Methods The present study recruited 89 children, including 33 diagnosed with DD, and 56 TD children. The aim was to examine the effectiveness of a deep learning classification model using facial video collected from children through mobile-based application. The study participants underwent comprehensive developmental assessments, which included the child completion of the Korean Psychoeducational Profile-Revised and caregiver completing the Korean versions of Vineland Adaptive Behavior Scale, Korean version of the Childhood Autism Rating Scale, Social Responsiveness Scale, and Child Behavior Checklist. We extracted facial landmarks from recorded videos using mobile application and performed DDs classification using long short-term memory with stratified 5-fold cross-validation.Results The classification model shows an average accuracy of 0.88 (range: 0.78–1.00), an average precision of 0.91 (range: 0.75–1.00), and an average F1-score of 0.80 (range: 0.60–1.00). Upon interpreting prediction results using SHapley Additive exPlanations (SHAP), we verified that the most crucial variable was the nodding head angle variable, with a median SHAP score of 2.6. All the top 10 contributing variables exhibited significant differences in distribution between children with DD and TD (p<0.05).Conclusion The results of this study provide evidence that facial landmarks, utilizing readily available mobile-based video data, can be used to detect DD at an early stage.","PeriodicalId":21164,"journal":{"name":"Psychiatry Investigation","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Screening of Children at Risk for Developmental Disabilities Using Facial Landmarks Derived From a Mobile-Based Application\",\"authors\":\"Sang Ho Hwang, Y. Yu, Jichul Kim, Taeyeop Lee, Y. Park, Hyo-Won Kim\",\"doi\":\"10.30773/pi.2023.0315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective Early detection and intervention of developmental disabilities (DDs) are critical to improving the long-term outcomes of afflicted children. In this study, our objective was to utilize facial landmark features from mobile application to distinguish between children with DDs and typically developing (TD) children.Methods The present study recruited 89 children, including 33 diagnosed with DD, and 56 TD children. The aim was to examine the effectiveness of a deep learning classification model using facial video collected from children through mobile-based application. The study participants underwent comprehensive developmental assessments, which included the child completion of the Korean Psychoeducational Profile-Revised and caregiver completing the Korean versions of Vineland Adaptive Behavior Scale, Korean version of the Childhood Autism Rating Scale, Social Responsiveness Scale, and Child Behavior Checklist. We extracted facial landmarks from recorded videos using mobile application and performed DDs classification using long short-term memory with stratified 5-fold cross-validation.Results The classification model shows an average accuracy of 0.88 (range: 0.78–1.00), an average precision of 0.91 (range: 0.75–1.00), and an average F1-score of 0.80 (range: 0.60–1.00). Upon interpreting prediction results using SHapley Additive exPlanations (SHAP), we verified that the most crucial variable was the nodding head angle variable, with a median SHAP score of 2.6. All the top 10 contributing variables exhibited significant differences in distribution between children with DD and TD (p<0.05).Conclusion The results of this study provide evidence that facial landmarks, utilizing readily available mobile-based video data, can be used to detect DD at an early stage.\",\"PeriodicalId\":21164,\"journal\":{\"name\":\"Psychiatry Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychiatry Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.30773/pi.2023.0315\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30773/pi.2023.0315","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHIATRY","Score":null,"Total":0}
A Study on the Screening of Children at Risk for Developmental Disabilities Using Facial Landmarks Derived From a Mobile-Based Application
Objective Early detection and intervention of developmental disabilities (DDs) are critical to improving the long-term outcomes of afflicted children. In this study, our objective was to utilize facial landmark features from mobile application to distinguish between children with DDs and typically developing (TD) children.Methods The present study recruited 89 children, including 33 diagnosed with DD, and 56 TD children. The aim was to examine the effectiveness of a deep learning classification model using facial video collected from children through mobile-based application. The study participants underwent comprehensive developmental assessments, which included the child completion of the Korean Psychoeducational Profile-Revised and caregiver completing the Korean versions of Vineland Adaptive Behavior Scale, Korean version of the Childhood Autism Rating Scale, Social Responsiveness Scale, and Child Behavior Checklist. We extracted facial landmarks from recorded videos using mobile application and performed DDs classification using long short-term memory with stratified 5-fold cross-validation.Results The classification model shows an average accuracy of 0.88 (range: 0.78–1.00), an average precision of 0.91 (range: 0.75–1.00), and an average F1-score of 0.80 (range: 0.60–1.00). Upon interpreting prediction results using SHapley Additive exPlanations (SHAP), we verified that the most crucial variable was the nodding head angle variable, with a median SHAP score of 2.6. All the top 10 contributing variables exhibited significant differences in distribution between children with DD and TD (p<0.05).Conclusion The results of this study provide evidence that facial landmarks, utilizing readily available mobile-based video data, can be used to detect DD at an early stage.
期刊介绍:
The Psychiatry Investigation is published on the 25th day of every month in English by the Korean Neuropsychiatric Association (KNPA). The Journal covers the whole range of psychiatry and neuroscience. Both basic and clinical contributions are encouraged from all disciplines and research areas relevant to the pathophysiology and management of neuropsychiatric disorders and symptoms, as well as researches related to cross cultural psychiatry and ethnic issues in psychiatry. The Journal publishes editorials, review articles, original articles, brief reports, viewpoints and correspondences. All research articles are peer reviewed. Contributions are accepted for publication on the condition that their substance has not been published or submitted for publication elsewhere. Authors submitting papers to the Journal (serially or otherwise) with a common theme or using data derived from the same sample (or a subset thereof) must send details of all relevant previous publications and simultaneous submissions. The Journal is not responsible for statements made by contributors. Material in the Journal does not necessarily reflect the views of the Editor or of the KNPA. Manuscripts accepted for publication are copy-edited to improve readability and to ensure conformity with house style.