{"title":"双色高粱(一种干旱和半干旱地区的重要粟类作物)2-3 叶期幼苗中镉诱导的细胞毒性及其 HO-1 和 ROS 淬灭酶介导的调节作用","authors":"Anita Singh, Suman Parihar, G.S. Shekhawat","doi":"10.1016/j.jtemin.2024.100165","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium is a non-essential trace metal element with no known biological function. Cd is toxic to both plants and human beings; hence, it is of prime concern to the scientific community. The objective of this research is to find out the effect of heme oxygenase 1 on Cd toxicity in <em>Sorghum bicolor</em> seedlings. Hydroponically adapted seedlings were treated to various concentrations of Cd within the range of 10 to 200 μM. Seedlings were harvested after 120 h of Cd stress. The cellular homeostasis and metal tolerance mechanisms were conducted to evaluate growth parameters, stress parameters (MDA and H<sub>2</sub>O<sub>2</sub> content), non-enzymatic and enzymatic parameters (CAT, APX and GPX) including HO 1. The results showed that HO 1 activity was measured to be highest in leaves at 150 μM CdCl<sub>2</sub>, which was 29.61 %.The HO 1 activity was correlated with the MDA content and antioxidant enzymes activity at this Cd concentration. The highest activity of HO 1 was revealed through the decrease of GPX and CAT activities. Consequently, HO 1 works within a cohort that helps the development of the plant's defense mechanisms by scavenging ROS, which is confirmed by the time-dependent study. Accordingly, our research highlighted that HO 1 might increase the efficiency of stress tolerance by enhancing antioxidant defence mechanisms against Cd toxicity in <em>S. bicolor.</em></p></div>","PeriodicalId":73997,"journal":{"name":"Journal of trace elements and minerals","volume":"9 ","pages":"Article 100165"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773050624000508/pdfft?md5=c4428a0facc671a6a379c90e41be5fef&pid=1-s2.0-S2773050624000508-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cd-induced cytotoxicity and its HO-1 and ROS quenching enzyme-mediated regulation in 2–3 leaf stage seedlings of Sorghum bicolor: An important millet crop of the arid & semi-arid regions\",\"authors\":\"Anita Singh, Suman Parihar, G.S. Shekhawat\",\"doi\":\"10.1016/j.jtemin.2024.100165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cadmium is a non-essential trace metal element with no known biological function. Cd is toxic to both plants and human beings; hence, it is of prime concern to the scientific community. The objective of this research is to find out the effect of heme oxygenase 1 on Cd toxicity in <em>Sorghum bicolor</em> seedlings. Hydroponically adapted seedlings were treated to various concentrations of Cd within the range of 10 to 200 μM. Seedlings were harvested after 120 h of Cd stress. The cellular homeostasis and metal tolerance mechanisms were conducted to evaluate growth parameters, stress parameters (MDA and H<sub>2</sub>O<sub>2</sub> content), non-enzymatic and enzymatic parameters (CAT, APX and GPX) including HO 1. The results showed that HO 1 activity was measured to be highest in leaves at 150 μM CdCl<sub>2</sub>, which was 29.61 %.The HO 1 activity was correlated with the MDA content and antioxidant enzymes activity at this Cd concentration. The highest activity of HO 1 was revealed through the decrease of GPX and CAT activities. Consequently, HO 1 works within a cohort that helps the development of the plant's defense mechanisms by scavenging ROS, which is confirmed by the time-dependent study. Accordingly, our research highlighted that HO 1 might increase the efficiency of stress tolerance by enhancing antioxidant defence mechanisms against Cd toxicity in <em>S. bicolor.</em></p></div>\",\"PeriodicalId\":73997,\"journal\":{\"name\":\"Journal of trace elements and minerals\",\"volume\":\"9 \",\"pages\":\"Article 100165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773050624000508/pdfft?md5=c4428a0facc671a6a379c90e41be5fef&pid=1-s2.0-S2773050624000508-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of trace elements and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773050624000508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of trace elements and minerals","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773050624000508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cd-induced cytotoxicity and its HO-1 and ROS quenching enzyme-mediated regulation in 2–3 leaf stage seedlings of Sorghum bicolor: An important millet crop of the arid & semi-arid regions
Cadmium is a non-essential trace metal element with no known biological function. Cd is toxic to both plants and human beings; hence, it is of prime concern to the scientific community. The objective of this research is to find out the effect of heme oxygenase 1 on Cd toxicity in Sorghum bicolor seedlings. Hydroponically adapted seedlings were treated to various concentrations of Cd within the range of 10 to 200 μM. Seedlings were harvested after 120 h of Cd stress. The cellular homeostasis and metal tolerance mechanisms were conducted to evaluate growth parameters, stress parameters (MDA and H2O2 content), non-enzymatic and enzymatic parameters (CAT, APX and GPX) including HO 1. The results showed that HO 1 activity was measured to be highest in leaves at 150 μM CdCl2, which was 29.61 %.The HO 1 activity was correlated with the MDA content and antioxidant enzymes activity at this Cd concentration. The highest activity of HO 1 was revealed through the decrease of GPX and CAT activities. Consequently, HO 1 works within a cohort that helps the development of the plant's defense mechanisms by scavenging ROS, which is confirmed by the time-dependent study. Accordingly, our research highlighted that HO 1 might increase the efficiency of stress tolerance by enhancing antioxidant defence mechanisms against Cd toxicity in S. bicolor.
Journal of trace elements and mineralsMedicine and Dentistry (General), Analytical Chemistry, Environmental Science (General), Toxicology, Biochemistry, Genetics and Molecular Biology (General), Nutrition, Veterinary Science and Veterinary Medicine (General)