交通排放对上海空气污染物水平和垂直分布的影响:从 COVID-19 禁区减排中获得的启示

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Yuxing Chen , Yan Zhang , Guangyuan Yu , Qian Wang , Hui Ma , Fan Yang
{"title":"交通排放对上海空气污染物水平和垂直分布的影响:从 COVID-19 禁区减排中获得的启示","authors":"Yuxing Chen ,&nbsp;Yan Zhang ,&nbsp;Guangyuan Yu ,&nbsp;Qian Wang ,&nbsp;Hui Ma ,&nbsp;Fan Yang","doi":"10.1016/j.aeaoa.2024.100267","DOIUrl":null,"url":null,"abstract":"<div><p>Transportation is a major sector of anthropogenic emissions in urban areas and deteriorates air quality. The surface and vertical observational data were combined with the model results to reveal its impact on the horizontal and vertical variations of pollutants during the COVID-19 lockdown period. The evident reductions in ambient PM<sub>2.5</sub> (∼30%) and NO<sub>2</sub> (∼50%) concentrations but a ∼25% increase in O<sub>3</sub> concentration were observed at the transportation sites. On the vertical scale, a uniform decrease of ∼28% in PM<sub>2.5</sub> concentrations was observed within 600 m. However, the vertical profiles of NO<sub>2</sub> and O<sub>3</sub> exhibited increasing vertical variation rates with concentrations varying significantly within 400 m. Meanwhile, O<sub><em>x</em></sub> shared a similar pattern of vertical profile with O<sub>3</sub>, with a uniform increase (∼5%) within 600 m in the urban area. The WRF-CMAQ model reproduced the variations, and revealed that the reduction of transportation emissions was the key factor contributing to the increase of urban O<sub>3</sub> and O<sub><em>x</em></sub> due to the weakened NO titration effect. The simulated vertical profile of NO<sub>2</sub> was featured by a decreasing curve, while that of O<sub>3</sub> exhibited the opposite trend. We find that the transportation emissions impact vertical concentrations of NO<sub>2</sub> and O<sub>3</sub> within at most 400 m. The process analysis revealed that the vertical transport and horizontal transport from bay areas contributed to O<sub>3</sub> in the urban area, while chemical processes mainly consumed it. The reduction in transportation emissions weakened the consumption and resulted in O<sub>3</sub> accumulation during rush hours and at night. The variation of planetary boundary layer height also favored the rise of urban O<sub>3</sub> by promoting vertical transport at daytime and trapping it at night. The reduction in NO<sub><em>x</em></sub> emissions from the transportation enhanced O<sub>3</sub> pollution, suggesting that collaborative reductions in VOCs from multiple sectors should be conducted. This study also indicated that regional collaborations in emission reductions were necessary for comprehensive air pollution prevention.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"22 ","pages":"Article 100267"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000340/pdfft?md5=3572bc0a9209595b62607eab878693b6&pid=1-s2.0-S2590162124000340-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impacts of transportation emissions on horizontal and vertical distributions of air pollutants in Shanghai: Insights from emission reduction in COVID-19 lockdown\",\"authors\":\"Yuxing Chen ,&nbsp;Yan Zhang ,&nbsp;Guangyuan Yu ,&nbsp;Qian Wang ,&nbsp;Hui Ma ,&nbsp;Fan Yang\",\"doi\":\"10.1016/j.aeaoa.2024.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transportation is a major sector of anthropogenic emissions in urban areas and deteriorates air quality. The surface and vertical observational data were combined with the model results to reveal its impact on the horizontal and vertical variations of pollutants during the COVID-19 lockdown period. The evident reductions in ambient PM<sub>2.5</sub> (∼30%) and NO<sub>2</sub> (∼50%) concentrations but a ∼25% increase in O<sub>3</sub> concentration were observed at the transportation sites. On the vertical scale, a uniform decrease of ∼28% in PM<sub>2.5</sub> concentrations was observed within 600 m. However, the vertical profiles of NO<sub>2</sub> and O<sub>3</sub> exhibited increasing vertical variation rates with concentrations varying significantly within 400 m. Meanwhile, O<sub><em>x</em></sub> shared a similar pattern of vertical profile with O<sub>3</sub>, with a uniform increase (∼5%) within 600 m in the urban area. The WRF-CMAQ model reproduced the variations, and revealed that the reduction of transportation emissions was the key factor contributing to the increase of urban O<sub>3</sub> and O<sub><em>x</em></sub> due to the weakened NO titration effect. The simulated vertical profile of NO<sub>2</sub> was featured by a decreasing curve, while that of O<sub>3</sub> exhibited the opposite trend. We find that the transportation emissions impact vertical concentrations of NO<sub>2</sub> and O<sub>3</sub> within at most 400 m. The process analysis revealed that the vertical transport and horizontal transport from bay areas contributed to O<sub>3</sub> in the urban area, while chemical processes mainly consumed it. The reduction in transportation emissions weakened the consumption and resulted in O<sub>3</sub> accumulation during rush hours and at night. The variation of planetary boundary layer height also favored the rise of urban O<sub>3</sub> by promoting vertical transport at daytime and trapping it at night. The reduction in NO<sub><em>x</em></sub> emissions from the transportation enhanced O<sub>3</sub> pollution, suggesting that collaborative reductions in VOCs from multiple sectors should be conducted. This study also indicated that regional collaborations in emission reductions were necessary for comprehensive air pollution prevention.</p></div>\",\"PeriodicalId\":37150,\"journal\":{\"name\":\"Atmospheric Environment: X\",\"volume\":\"22 \",\"pages\":\"Article 100267\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590162124000340/pdfft?md5=3572bc0a9209595b62607eab878693b6&pid=1-s2.0-S2590162124000340-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590162124000340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162124000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

交通是城市地区人为排放的一个主要部门,并导致空气质量恶化。地面和垂直观测数据与模型结果相结合,揭示了 COVID-19 封锁期间对污染物水平和垂直变化的影响。在交通站点,PM2.5 和 NO2 的浓度明显下降(30%∼50%),但 O3 浓度上升(25%∼25%)。在垂直尺度上,PM2.5浓度在600米范围内均匀下降了28%;然而,NO2和O3的垂直剖面表现出越来越大的垂直变化率,浓度在400米范围内变化显著。WRF-CMAQ 模型再现了这些变化,并揭示了由于 NO 滴定效应减弱,交通排放的减少是导致城市 O3 和 Ox 增加的关键因素。模拟的二氧化氮垂直分布曲线呈下降趋势,而臭氧垂直分布曲线呈相反趋势。我们发现,交通排放影响了最多 400 米范围内的 NO2 和 O3 垂直浓度。过程分析表明,海湾地区的垂直传输和水平传输对城区的 O3 起了作用,而化学过程则主要消耗了 O3。交通排放的减少削弱了消耗,导致高峰时段和夜间的 O3 累积。行星边界层高度的变化也促进了白天的垂直传输和夜间的捕获,从而有利于城市 O3 的增加。交通部门氮氧化物排放量的减少加剧了臭氧污染,这表明应协同减少多个部门的挥发性有机化合物。这项研究还表明,要全面预防空气污染,必须开展区域减排合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impacts of transportation emissions on horizontal and vertical distributions of air pollutants in Shanghai: Insights from emission reduction in COVID-19 lockdown

Transportation is a major sector of anthropogenic emissions in urban areas and deteriorates air quality. The surface and vertical observational data were combined with the model results to reveal its impact on the horizontal and vertical variations of pollutants during the COVID-19 lockdown period. The evident reductions in ambient PM2.5 (∼30%) and NO2 (∼50%) concentrations but a ∼25% increase in O3 concentration were observed at the transportation sites. On the vertical scale, a uniform decrease of ∼28% in PM2.5 concentrations was observed within 600 m. However, the vertical profiles of NO2 and O3 exhibited increasing vertical variation rates with concentrations varying significantly within 400 m. Meanwhile, Ox shared a similar pattern of vertical profile with O3, with a uniform increase (∼5%) within 600 m in the urban area. The WRF-CMAQ model reproduced the variations, and revealed that the reduction of transportation emissions was the key factor contributing to the increase of urban O3 and Ox due to the weakened NO titration effect. The simulated vertical profile of NO2 was featured by a decreasing curve, while that of O3 exhibited the opposite trend. We find that the transportation emissions impact vertical concentrations of NO2 and O3 within at most 400 m. The process analysis revealed that the vertical transport and horizontal transport from bay areas contributed to O3 in the urban area, while chemical processes mainly consumed it. The reduction in transportation emissions weakened the consumption and resulted in O3 accumulation during rush hours and at night. The variation of planetary boundary layer height also favored the rise of urban O3 by promoting vertical transport at daytime and trapping it at night. The reduction in NOx emissions from the transportation enhanced O3 pollution, suggesting that collaborative reductions in VOCs from multiple sectors should be conducted. This study also indicated that regional collaborations in emission reductions were necessary for comprehensive air pollution prevention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信