Javier Blanco-Rodríguez, Jacobo Porteiro, José A. López-Campos, Martí Cortada-García, Silvia Fernández-Castejón
{"title":"超低粘度润滑油在高功率密度发动机中的磨损保护评估:新型磨损预测算法","authors":"Javier Blanco-Rodríguez, Jacobo Porteiro, José A. López-Campos, Martí Cortada-García, Silvia Fernández-Castejón","doi":"10.1007/s40544-023-0854-3","DOIUrl":null,"url":null,"abstract":"<p>Durability and reliability have been studied for decades through intensive trial-error experimentation. However, there are numerous fields of application where the costs associated with this approach are not acceptable. In lubricated machines with severe dynamic loads, such as high-power-density engines, simulation tools offer clear advantages over intensive testing. Prototypes and multiple scenarios can be cost-effectively simulated to assess different lubricants and engine configurations. The work presented here details the study of wear based on a validated elastohydrodynamic (EHD) simulation model of the connecting rod journal bearing. This model accounts for elastic deformation through a connecting rod finite element model (FEM). In addition, multiple lubricant rheological and tribological dependences, determined by specific experimental tests, are applied in the model through their interaction with the simulation software. Correspondingly, a novel wear algorithm is proposed to predict wear depth over time evolution along a proposed wear cycle based on the typical working ranges of high-performance engines. A final assessment is presented to compare 4 different ultralow-viscosity lubricants in their protective performance under severe conditions. The results show the evolution of the wear load and wear depth over the wear cycle. This evaluation is key to describing a lubricant selection procedure for high-power-density engines.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"91 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear protection assessment of ultralow viscosity lubricants in high-power-density engines: A novel wear prediction algorithm\",\"authors\":\"Javier Blanco-Rodríguez, Jacobo Porteiro, José A. López-Campos, Martí Cortada-García, Silvia Fernández-Castejón\",\"doi\":\"10.1007/s40544-023-0854-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Durability and reliability have been studied for decades through intensive trial-error experimentation. However, there are numerous fields of application where the costs associated with this approach are not acceptable. In lubricated machines with severe dynamic loads, such as high-power-density engines, simulation tools offer clear advantages over intensive testing. Prototypes and multiple scenarios can be cost-effectively simulated to assess different lubricants and engine configurations. The work presented here details the study of wear based on a validated elastohydrodynamic (EHD) simulation model of the connecting rod journal bearing. This model accounts for elastic deformation through a connecting rod finite element model (FEM). In addition, multiple lubricant rheological and tribological dependences, determined by specific experimental tests, are applied in the model through their interaction with the simulation software. Correspondingly, a novel wear algorithm is proposed to predict wear depth over time evolution along a proposed wear cycle based on the typical working ranges of high-performance engines. A final assessment is presented to compare 4 different ultralow-viscosity lubricants in their protective performance under severe conditions. The results show the evolution of the wear load and wear depth over the wear cycle. This evaluation is key to describing a lubricant selection procedure for high-power-density engines.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-023-0854-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0854-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Wear protection assessment of ultralow viscosity lubricants in high-power-density engines: A novel wear prediction algorithm
Durability and reliability have been studied for decades through intensive trial-error experimentation. However, there are numerous fields of application where the costs associated with this approach are not acceptable. In lubricated machines with severe dynamic loads, such as high-power-density engines, simulation tools offer clear advantages over intensive testing. Prototypes and multiple scenarios can be cost-effectively simulated to assess different lubricants and engine configurations. The work presented here details the study of wear based on a validated elastohydrodynamic (EHD) simulation model of the connecting rod journal bearing. This model accounts for elastic deformation through a connecting rod finite element model (FEM). In addition, multiple lubricant rheological and tribological dependences, determined by specific experimental tests, are applied in the model through their interaction with the simulation software. Correspondingly, a novel wear algorithm is proposed to predict wear depth over time evolution along a proposed wear cycle based on the typical working ranges of high-performance engines. A final assessment is presented to compare 4 different ultralow-viscosity lubricants in their protective performance under severe conditions. The results show the evolution of the wear load and wear depth over the wear cycle. This evaluation is key to describing a lubricant selection procedure for high-power-density engines.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.