作为高效高温润滑油添加剂的自分散二硫化钼量子点/石墨烯皱缩球

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Friction Pub Date : 2024-05-25 DOI:10.1007/s40544-023-0853-4
Guiru Du, Yujuan Zhang, Shuguang Fan, Ningning Song, Shengmao Zhang, Pingyu Zhang
{"title":"作为高效高温润滑油添加剂的自分散二硫化钼量子点/石墨烯皱缩球","authors":"Guiru Du, Yujuan Zhang, Shuguang Fan, Ningning Song, Shengmao Zhang, Pingyu Zhang","doi":"10.1007/s40544-023-0853-4","DOIUrl":null,"url":null,"abstract":"<p>Inorganic nanoparticles have been proved as powerful lubricant additives at elevated temperature. However, the tribological properties are inevitably impaired due to poor dispersion and insufficient high temperature resistance of organic matter modified nanoparticles. Here, we prepare a self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball (MGCB) comprising molybdenum disulfide quantum dot uniformly interspersed on the wrinkled graphene ball. The crumpled ball composite possesses excellent dispersity in polyalkylene glycol base oil without depending on surface modifiers. Compared with the conventional phosphate esters lubricant, our results indicate MGCB could vastly improve the lubrication performance of polyalkylene glycol with an extremely low concentration (0.05 wt%) at elevated temperature (150 °C), showing a friction reduction of 47% and a wear reduction of 30% compared with the conventional phosphate esters lubricant (tricresyl phosphate, TCP). This is because crumpled ball potentiates synergistic lubrication effect within the boundary lubrication. Overall, we envision our designed self-dispersed MGCB has significant potential in tribological application at elevated temperature.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"139 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball as efficient high temperature lubricant additive\",\"authors\":\"Guiru Du, Yujuan Zhang, Shuguang Fan, Ningning Song, Shengmao Zhang, Pingyu Zhang\",\"doi\":\"10.1007/s40544-023-0853-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inorganic nanoparticles have been proved as powerful lubricant additives at elevated temperature. However, the tribological properties are inevitably impaired due to poor dispersion and insufficient high temperature resistance of organic matter modified nanoparticles. Here, we prepare a self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball (MGCB) comprising molybdenum disulfide quantum dot uniformly interspersed on the wrinkled graphene ball. The crumpled ball composite possesses excellent dispersity in polyalkylene glycol base oil without depending on surface modifiers. Compared with the conventional phosphate esters lubricant, our results indicate MGCB could vastly improve the lubrication performance of polyalkylene glycol with an extremely low concentration (0.05 wt%) at elevated temperature (150 °C), showing a friction reduction of 47% and a wear reduction of 30% compared with the conventional phosphate esters lubricant (tricresyl phosphate, TCP). This is because crumpled ball potentiates synergistic lubrication effect within the boundary lubrication. Overall, we envision our designed self-dispersed MGCB has significant potential in tribological application at elevated temperature.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"139 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-023-0853-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0853-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

无机纳米粒子已被证明可在高温条件下用作强力润滑添加剂。然而,由于有机物修饰的纳米粒子分散性差、耐高温性不足,其摩擦学性能不可避免地受到损害。在这里,我们制备了一种自分散二硫化钼量子点/石墨烯皱褶球(MGCB),它由均匀分布在皱褶石墨烯球上的二硫化钼量子点组成。这种皱球复合材料在聚亚烷基二醇基础油中具有优异的分散性,无需依赖表面改性剂。与传统的磷酸酯润滑剂相比,我们的研究结果表明,MGCB 能以极低的浓度(0.05 wt%)大幅提高聚亚烷基二醇在高温(150 °C)下的润滑性能,与传统的磷酸酯润滑剂(磷酸三甲苯酯,TCP)相比,摩擦降低了 47%,磨损降低了 30%。这是因为皱球增强了边界润滑内的协同润滑效果。总之,我们认为所设计的自分散 MGCB 在高温摩擦学应用中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball as efficient high temperature lubricant additive

Self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball as efficient high temperature lubricant additive

Inorganic nanoparticles have been proved as powerful lubricant additives at elevated temperature. However, the tribological properties are inevitably impaired due to poor dispersion and insufficient high temperature resistance of organic matter modified nanoparticles. Here, we prepare a self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball (MGCB) comprising molybdenum disulfide quantum dot uniformly interspersed on the wrinkled graphene ball. The crumpled ball composite possesses excellent dispersity in polyalkylene glycol base oil without depending on surface modifiers. Compared with the conventional phosphate esters lubricant, our results indicate MGCB could vastly improve the lubrication performance of polyalkylene glycol with an extremely low concentration (0.05 wt%) at elevated temperature (150 °C), showing a friction reduction of 47% and a wear reduction of 30% compared with the conventional phosphate esters lubricant (tricresyl phosphate, TCP). This is because crumpled ball potentiates synergistic lubrication effect within the boundary lubrication. Overall, we envision our designed self-dispersed MGCB has significant potential in tribological application at elevated temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信