Mario César A. de Oliveira , Andre L. Freire , Iuri C.M. Candido , Younes Messaddeq , Jerome Lapointe , Julie Fréchette , Réal Vallée , Helinando P. de Oliveira
{"title":"基于激光诱导石墨烯的柔性微型超级电容器和三电纳米发电机的自供电应用","authors":"Mario César A. de Oliveira , Andre L. Freire , Iuri C.M. Candido , Younes Messaddeq , Jerome Lapointe , Julie Fréchette , Réal Vallée , Helinando P. de Oliveira","doi":"10.1016/j.nxener.2024.100141","DOIUrl":null,"url":null,"abstract":"<div><p>The development of graphene-based electrodes for application in energy storage and energy harvesting devices represents an important strategy for producing wearable devices with requisites of flexibility and good electrochemical performance. Herein, the use of laser-induced graphene (LIG) has been explored as a simple and efficient method for the production of interdigitated microsupercapacitors (μSCs) and back electrodes for triboelectric nanogenerators (TENGs) active layers by direct production of graphene from Kapton polyimide and by the transference of the pattern to polydimethylsiloxane (a typical tribonegative layer for TENG). An open circuit voltage of 189.7 V, short circuit current of 39.8 μA, and power of 302.5 μW (power density of 20.2 μW/cm<sup>2</sup>) was observed for the conventional TENG while an areal capacitance of 2.5 mF/cm<sup>2</sup> with good retention in the energy generation and cyclability in energy storage was observed for the microsupercapacitor. The most relevant aspect to be considered is a single-step method for transference of back-electrode to the Poly(dimethylsiloxane) requiring minimal processing steps for morphology control in the friction layer and self-powered behavior for integration of TENG/microsupercapacitor in a power unit cell.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100141"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000462/pdfft?md5=8d7101717af65bd6e3d0e59b94dba69f&pid=1-s2.0-S2949821X24000462-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexible micro supercapacitor and triboelectric nanogenerator based on laser-induced graphene for self-powered applications\",\"authors\":\"Mario César A. de Oliveira , Andre L. Freire , Iuri C.M. Candido , Younes Messaddeq , Jerome Lapointe , Julie Fréchette , Réal Vallée , Helinando P. de Oliveira\",\"doi\":\"10.1016/j.nxener.2024.100141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of graphene-based electrodes for application in energy storage and energy harvesting devices represents an important strategy for producing wearable devices with requisites of flexibility and good electrochemical performance. Herein, the use of laser-induced graphene (LIG) has been explored as a simple and efficient method for the production of interdigitated microsupercapacitors (μSCs) and back electrodes for triboelectric nanogenerators (TENGs) active layers by direct production of graphene from Kapton polyimide and by the transference of the pattern to polydimethylsiloxane (a typical tribonegative layer for TENG). An open circuit voltage of 189.7 V, short circuit current of 39.8 μA, and power of 302.5 μW (power density of 20.2 μW/cm<sup>2</sup>) was observed for the conventional TENG while an areal capacitance of 2.5 mF/cm<sup>2</sup> with good retention in the energy generation and cyclability in energy storage was observed for the microsupercapacitor. The most relevant aspect to be considered is a single-step method for transference of back-electrode to the Poly(dimethylsiloxane) requiring minimal processing steps for morphology control in the friction layer and self-powered behavior for integration of TENG/microsupercapacitor in a power unit cell.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"4 \",\"pages\":\"Article 100141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000462/pdfft?md5=8d7101717af65bd6e3d0e59b94dba69f&pid=1-s2.0-S2949821X24000462-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible micro supercapacitor and triboelectric nanogenerator based on laser-induced graphene for self-powered applications
The development of graphene-based electrodes for application in energy storage and energy harvesting devices represents an important strategy for producing wearable devices with requisites of flexibility and good electrochemical performance. Herein, the use of laser-induced graphene (LIG) has been explored as a simple and efficient method for the production of interdigitated microsupercapacitors (μSCs) and back electrodes for triboelectric nanogenerators (TENGs) active layers by direct production of graphene from Kapton polyimide and by the transference of the pattern to polydimethylsiloxane (a typical tribonegative layer for TENG). An open circuit voltage of 189.7 V, short circuit current of 39.8 μA, and power of 302.5 μW (power density of 20.2 μW/cm2) was observed for the conventional TENG while an areal capacitance of 2.5 mF/cm2 with good retention in the energy generation and cyclability in energy storage was observed for the microsupercapacitor. The most relevant aspect to be considered is a single-step method for transference of back-electrode to the Poly(dimethylsiloxane) requiring minimal processing steps for morphology control in the friction layer and self-powered behavior for integration of TENG/microsupercapacitor in a power unit cell.