R. Salini, G. Charlyn Pushpa Latha, Rashmita Khilar
{"title":"利用改进的深度联合分割和 GoogleNet-IRNN 组合检测植物病害","authors":"R. Salini, G. Charlyn Pushpa Latha, Rashmita Khilar","doi":"10.1111/jph.13313","DOIUrl":null,"url":null,"abstract":"<p>Productivity in agriculture plays a major role in economic expansion. Because plant disease is a widespread occurrence, plant disease detection is an important problem in the world of agriculture. Plants do suffer a significant consequence if the required care is not taken at the beginning, which affects the amount, quality or productivity of the relevant products. Because it can detect disease symptoms at the earliest stage and reduces the labour required for large crop farm tracking, the automated plant disease detection system is more advantageous. In order to detect plant diseases, this paper proposes a novel, four-step methodology that consists of improved deep joint image segmentation, feature extraction (which includes LGXP, MBP, colour feature and hierarchy of skeleton feature extraction) and detection via hybrid DL classifier, specifically improved RNN with the transfer learning process and GoogleNet. By averaging the classifiers' results scores, the final detection result is calculated. In terms of several performance metrics, the suggested work's effectiveness is verified in comparison to the traditional models. In contrast to the SVM (79.5597), KNN (59.2767), LSTM (78.1446), GoogleNet (79.4025), CNN (77.6729), and CAE + CNN (80.1886), the F-measure of the IRNN-TL is 91.1949.</p>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant disease detection with modified deep joint segmentation and combined GoogleNet-IRNN\",\"authors\":\"R. Salini, G. Charlyn Pushpa Latha, Rashmita Khilar\",\"doi\":\"10.1111/jph.13313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Productivity in agriculture plays a major role in economic expansion. Because plant disease is a widespread occurrence, plant disease detection is an important problem in the world of agriculture. Plants do suffer a significant consequence if the required care is not taken at the beginning, which affects the amount, quality or productivity of the relevant products. Because it can detect disease symptoms at the earliest stage and reduces the labour required for large crop farm tracking, the automated plant disease detection system is more advantageous. In order to detect plant diseases, this paper proposes a novel, four-step methodology that consists of improved deep joint image segmentation, feature extraction (which includes LGXP, MBP, colour feature and hierarchy of skeleton feature extraction) and detection via hybrid DL classifier, specifically improved RNN with the transfer learning process and GoogleNet. By averaging the classifiers' results scores, the final detection result is calculated. In terms of several performance metrics, the suggested work's effectiveness is verified in comparison to the traditional models. In contrast to the SVM (79.5597), KNN (59.2767), LSTM (78.1446), GoogleNet (79.4025), CNN (77.6729), and CAE + CNN (80.1886), the F-measure of the IRNN-TL is 91.1949.</p>\",\"PeriodicalId\":16843,\"journal\":{\"name\":\"Journal of Phytopathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jph.13313\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13313","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plant disease detection with modified deep joint segmentation and combined GoogleNet-IRNN
Productivity in agriculture plays a major role in economic expansion. Because plant disease is a widespread occurrence, plant disease detection is an important problem in the world of agriculture. Plants do suffer a significant consequence if the required care is not taken at the beginning, which affects the amount, quality or productivity of the relevant products. Because it can detect disease symptoms at the earliest stage and reduces the labour required for large crop farm tracking, the automated plant disease detection system is more advantageous. In order to detect plant diseases, this paper proposes a novel, four-step methodology that consists of improved deep joint image segmentation, feature extraction (which includes LGXP, MBP, colour feature and hierarchy of skeleton feature extraction) and detection via hybrid DL classifier, specifically improved RNN with the transfer learning process and GoogleNet. By averaging the classifiers' results scores, the final detection result is calculated. In terms of several performance metrics, the suggested work's effectiveness is verified in comparison to the traditional models. In contrast to the SVM (79.5597), KNN (59.2767), LSTM (78.1446), GoogleNet (79.4025), CNN (77.6729), and CAE + CNN (80.1886), the F-measure of the IRNN-TL is 91.1949.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.