Drago Bračun , Luka Selak , Damjan Klobčar , Marko Katić , Damir Markučič
{"title":"用于非接触式检测半透明复合材料空隙的侵入式激光三角测量法","authors":"Drago Bračun , Luka Selak , Damjan Klobčar , Marko Katić , Damir Markučič","doi":"10.1016/j.ndteint.2024.103143","DOIUrl":null,"url":null,"abstract":"<div><p>A non-contact optical inspection method for detecting voids in translucent composites is presented. Structured laser light is used to illuminate the inspected part. As the light penetrates the matrix, it scatters and is reflected from internal structures, rendering them perceptible in close proximity of the laser illumination. A systematic image acquisition and scanning approach is employed along with image processing to reconstruct and visually represent the internal composition of the inspected part. Experiments involving translucent epoxy and polyester based composites demonstrate capability to detect voids with depths reaching up to 5 mm. The detection depth is predominantly influenced by the light transmittance properties of the matrix, as well as the density and quantity of fiber layers. The arrangement of the camera and laser on the same side of the inspected part facilitates the examination of parts with varying thicknesses. The presented method is intended for automated inspection in mass production by leveraging its non-contact characteristics and high operational velocity.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"145 ","pages":"Article 103143"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0963869524001087/pdfft?md5=f4ff6fe4ebe9a14e1a6fea4f7073275e&pid=1-s2.0-S0963869524001087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intrusive laser triangulation method for non-contact detection of voids in translucent composites\",\"authors\":\"Drago Bračun , Luka Selak , Damjan Klobčar , Marko Katić , Damir Markučič\",\"doi\":\"10.1016/j.ndteint.2024.103143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A non-contact optical inspection method for detecting voids in translucent composites is presented. Structured laser light is used to illuminate the inspected part. As the light penetrates the matrix, it scatters and is reflected from internal structures, rendering them perceptible in close proximity of the laser illumination. A systematic image acquisition and scanning approach is employed along with image processing to reconstruct and visually represent the internal composition of the inspected part. Experiments involving translucent epoxy and polyester based composites demonstrate capability to detect voids with depths reaching up to 5 mm. The detection depth is predominantly influenced by the light transmittance properties of the matrix, as well as the density and quantity of fiber layers. The arrangement of the camera and laser on the same side of the inspected part facilitates the examination of parts with varying thicknesses. The presented method is intended for automated inspection in mass production by leveraging its non-contact characteristics and high operational velocity.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"145 \",\"pages\":\"Article 103143\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001087/pdfft?md5=f4ff6fe4ebe9a14e1a6fea4f7073275e&pid=1-s2.0-S0963869524001087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001087\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001087","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Intrusive laser triangulation method for non-contact detection of voids in translucent composites
A non-contact optical inspection method for detecting voids in translucent composites is presented. Structured laser light is used to illuminate the inspected part. As the light penetrates the matrix, it scatters and is reflected from internal structures, rendering them perceptible in close proximity of the laser illumination. A systematic image acquisition and scanning approach is employed along with image processing to reconstruct and visually represent the internal composition of the inspected part. Experiments involving translucent epoxy and polyester based composites demonstrate capability to detect voids with depths reaching up to 5 mm. The detection depth is predominantly influenced by the light transmittance properties of the matrix, as well as the density and quantity of fiber layers. The arrangement of the camera and laser on the same side of the inspected part facilitates the examination of parts with varying thicknesses. The presented method is intended for automated inspection in mass production by leveraging its non-contact characteristics and high operational velocity.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.