{"title":"作为光催化剂降解污染物的 MXene/MOF 复合材料综述","authors":"Arash Fattah-alhosseini , Zahra Sangarimotlagh , Minoo Karbasi , Mosab Kaseem","doi":"10.1016/j.nanoso.2024.101192","DOIUrl":null,"url":null,"abstract":"<div><p>MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>), a family of two-dimensional transition metal nitrides, carbides, and carbonitrides, has made them attractive candidates for photocatalytic applications such as pollutant degradation due to their unique characteristics and diverse unsees in recent years. Ti<sub>3</sub>C<sub>2</sub> shows robust stability under conditions of photocatalysis and is appropriate for enduring usage. In order to increase the photocatalytic performance of Ti<sub>3</sub>C<sub>2</sub>, it can be composited with other materials such as MOFs and eventually produce more electron-hole pairs to improve its photocatalytic performance and increase the percentage of the pollutant degradation process. Conversely, MOFs are gaining prominence as materials because of their extensive surface area and semiconducting properties. Therefore, the coupling of MXene and MOFs will be promising for the formation of composites with high efficiency for photocatalytic applications including pollutant degradation. Therefore, the primary aim of this study is to reveal the latest advancements in composites based on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> for the degradation of organic pollutants. MOFs are capable of producing electron/hole pairs induced by light, which subsequently convey electrons to MXene via junctions for photoredox reactions. In this research, properties, morphology, synthesis and optical properties etc. of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and their composites are stated. Then, the photodegradation performance of MXene/MOF composite and the mechanisms that were reported for the process of degrading organic dyes through photocatalysis have been discussed. The results showed that MXene/MOF composite has a higher pollutant degradation percentage than MXene. Composite materials of MXene/MOF have demonstrated potential in the degradation of pollutants, attributed to their distinctive characteristics and combined impacts. The MXene element in the composite contributes to superior electrical conductivity and catalytic behavior, whereas the MOFs element is characterized by its extensive surface area and selective adsorption capabilities. Upon their combination, these substances are capable of efficiently eliminating a range of pollutants, including organic dyes, from water. In summary, composites of MXene/MOF exhibit significant promise for environmental cleanup applications, providing high effectiveness, durability, and reusability in processes of pollutant degradation.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.4500,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of MXene/MOF composites as photocatalysts for pollutant degradation\",\"authors\":\"Arash Fattah-alhosseini , Zahra Sangarimotlagh , Minoo Karbasi , Mosab Kaseem\",\"doi\":\"10.1016/j.nanoso.2024.101192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>), a family of two-dimensional transition metal nitrides, carbides, and carbonitrides, has made them attractive candidates for photocatalytic applications such as pollutant degradation due to their unique characteristics and diverse unsees in recent years. Ti<sub>3</sub>C<sub>2</sub> shows robust stability under conditions of photocatalysis and is appropriate for enduring usage. In order to increase the photocatalytic performance of Ti<sub>3</sub>C<sub>2</sub>, it can be composited with other materials such as MOFs and eventually produce more electron-hole pairs to improve its photocatalytic performance and increase the percentage of the pollutant degradation process. Conversely, MOFs are gaining prominence as materials because of their extensive surface area and semiconducting properties. Therefore, the coupling of MXene and MOFs will be promising for the formation of composites with high efficiency for photocatalytic applications including pollutant degradation. Therefore, the primary aim of this study is to reveal the latest advancements in composites based on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> for the degradation of organic pollutants. MOFs are capable of producing electron/hole pairs induced by light, which subsequently convey electrons to MXene via junctions for photoredox reactions. In this research, properties, morphology, synthesis and optical properties etc. of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and their composites are stated. Then, the photodegradation performance of MXene/MOF composite and the mechanisms that were reported for the process of degrading organic dyes through photocatalysis have been discussed. The results showed that MXene/MOF composite has a higher pollutant degradation percentage than MXene. Composite materials of MXene/MOF have demonstrated potential in the degradation of pollutants, attributed to their distinctive characteristics and combined impacts. The MXene element in the composite contributes to superior electrical conductivity and catalytic behavior, whereas the MOFs element is characterized by its extensive surface area and selective adsorption capabilities. Upon their combination, these substances are capable of efficiently eliminating a range of pollutants, including organic dyes, from water. In summary, composites of MXene/MOF exhibit significant promise for environmental cleanup applications, providing high effectiveness, durability, and reusability in processes of pollutant degradation.</p></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24001033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24001033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Review of MXene/MOF composites as photocatalysts for pollutant degradation
MXene (Ti3C2Tx), a family of two-dimensional transition metal nitrides, carbides, and carbonitrides, has made them attractive candidates for photocatalytic applications such as pollutant degradation due to their unique characteristics and diverse unsees in recent years. Ti3C2 shows robust stability under conditions of photocatalysis and is appropriate for enduring usage. In order to increase the photocatalytic performance of Ti3C2, it can be composited with other materials such as MOFs and eventually produce more electron-hole pairs to improve its photocatalytic performance and increase the percentage of the pollutant degradation process. Conversely, MOFs are gaining prominence as materials because of their extensive surface area and semiconducting properties. Therefore, the coupling of MXene and MOFs will be promising for the formation of composites with high efficiency for photocatalytic applications including pollutant degradation. Therefore, the primary aim of this study is to reveal the latest advancements in composites based on Ti3C2Tx for the degradation of organic pollutants. MOFs are capable of producing electron/hole pairs induced by light, which subsequently convey electrons to MXene via junctions for photoredox reactions. In this research, properties, morphology, synthesis and optical properties etc. of Ti3C2Tx and their composites are stated. Then, the photodegradation performance of MXene/MOF composite and the mechanisms that were reported for the process of degrading organic dyes through photocatalysis have been discussed. The results showed that MXene/MOF composite has a higher pollutant degradation percentage than MXene. Composite materials of MXene/MOF have demonstrated potential in the degradation of pollutants, attributed to their distinctive characteristics and combined impacts. The MXene element in the composite contributes to superior electrical conductivity and catalytic behavior, whereas the MOFs element is characterized by its extensive surface area and selective adsorption capabilities. Upon their combination, these substances are capable of efficiently eliminating a range of pollutants, including organic dyes, from water. In summary, composites of MXene/MOF exhibit significant promise for environmental cleanup applications, providing high effectiveness, durability, and reusability in processes of pollutant degradation.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .